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Summary on Studies of Functionally Graded Materials

For functionally graded materials (FGMs), the change of microstructures
induces material gradients, and makes them different in behavior from other
materials, homogeneous and conventional composite materials. Our current
study has been focused on the following two aspects: (1) Micro-residual-
stress under thermal loading. A physical based computational model is
developed to study microstructures in FGMs under thermal loading. The
influence of discrete microstructure on residual stress at the grain size level
is examined. (2) Fracture mechanics. In particular, the study has been carried
out to determine the effect of material gradients on the crack tip for various
loadings and geometries, including the commonly used specimens, under the
small-scale yielding condition. A locally homogeneous model has been
proposed to predict the crack propagation direction under the influence of
loading, geometry and material gradients. Both analytical and numerical
methods have been investigated for crack mechanics of the non-traditional,
non-homogeneous materials. The brief summary of our work is as follows
according to the two aspects.

(a) Effect of Microstructure on FGMs

The microstructures of FGMs are discrete and random in nature. The
heterogeneous structure causes locally concentrated residual stress during
thermal loading, as we have shown in calculations using micro-mechanics
model. The effect of discrete microstructure on residual stress distribution at
the grain size level are examined with respect to material gradients and FGM
volume percentage within a ceramic-FGM interlayer-metal layer system.
Both thermal-elastic and thermal-plastic deformations are considered, and
the plastic behavior of metal grain is modeled by crystal plasticity theory.
The results are compared with those obtained using a continuous model
which does not consider the microstructure. In the averaged sense both
micro-mechanics model and continuous model give the same macroscopic
stress, whereas the micro-mechanics model predicts fairly high stress
concentration at the grain size level, higher than 700 MPa for 300 degree
temperature drop in Ni- 4,0, system. Statistical analysis shows that the
stress concentration is insensitive to material gradients and FGM volume
percentage. This suggests that the consideration of microstructure of FGM
for detailed analysis is needed.




Figure 1 is our computational model in which the difference of the
continuous model and micro-mechanical model is clearly seen. Figure 2
shows the contour plots of (a) averaged in-plane principal stress p and (b)
accumulated sum of slips developed in the linear gradient, 40% FGM. The
temperature drop was from 700 to 400°C. Similar to the elastic case, the
stress distribution is inhomogeneous, with many metal grams expenencmg
high tensile stresses and many ceramic grams expenencmg compressive
- stresses. Stress concentration in the ceramic grains is significantly reduced in
the region where metal content is greater than 70vol% due to plastic
relaxation. With only 300 degree temperature drop, Figure 2(b) shows that:
(a) there is plastic strain accumulation in many of metal grains, and (b)
certain sites have relatively high strain accumulations, about 1.5%. The high
strain accumulation seems to appear in the regions where metal content is
between 50 to 75%. Figure 3 shows the distribution profiles of averaged in-
plane stress in FGM layer for both elastic and plastic cases. The plastic
relaxation effect is very clear here since stresses are in general shifted to
lower magnitudes. The distribution for high tensile stresses with p>700Mpea,
however, has reduced only slightly with plastic relaxation. Similar to the
thermal-elastic case, the stress distribution profile for high tensile stress
regions is insensitive to material gradient and FGM volume percentage. On
the other hand, the distribution profile for high compressive stresses with
p<-2500Mpa (mostly in ceramic grains) drops significantly. This suggests
that, when ceramic grains are subject to tensile stresses if temperature
increases, the plastic relaxation effects may reduce their tensile stress
concentrations. We average stresses over each column of elements for the
plastic solution to obtain the averaged in-plane stresses. Compared with the
elastic averaged in-plane stresses, it is found that the metal rich section and
part of the pure metal region are under general macroscopic yielding, which
sets the maximum magnitude of the macroscopic stresses for the plastic
case.

We also employ APSP (averaged peak stress of p) to treat the data
obtained. The term 6% APSP is the stress p averaged over the 6vol%
microstructure of the FGM layer which has the highest tensile stresses (p);
similar, one can obtain 3vol% APSP etc. Figure 4 shows the 6vol% APSP
for different material gradients and different FGM volume percentages, and
for both elastic (marked with EL) and plastic solution (marked with PL).
From it, the distribution profile for high stresses is found to insensitive to
material gradients and FGM volume percentages, and the plastic relaxation
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effect is relatively small for high stresses. Similar conclusion can be
obtained for 3vol% APSP.

(b) Cracks in FGMs

In the crack problems we have studied, a closed form solution for a semi-
infinite crack in a FGM strip is obtained. From the fundamental solution, we
have found these useful solutions: four-point-bending specimen, orthotropic
cracked FGM plate. These results show that the material gradients do have a
strong effect on the stress intensity factors and the mode mixity which
measures the proportion of mode I to mode II at the crack tip. The
magnitude of the stress intensity and the mode mixity are considered as the
most important factors to determine crack propagation in FGMs. The
documented complete solution can be used in fracture testing of FGMs. For
the small-scale yielding crack, crack deflection initiation in FGMs is studied
by the locally homogeneous model. In the model, the effect of
microstructure at the tip region is neglected and as in all of our work for
crack problems up to now the FGMs are considered as perfectly non-
homogeneous materials with gradients of material properties at macroscopic
level. The locally homogeneous model neglects the second order effects and
is a first order approximation. Using it, we have examined the crack
propagation direction in several cracked specimens. In our numerical study,
a simplified method is found for calculating crack tip field of FGMs in finite
element analysis. We show that the standard domain integral is sufficiently
accurate when applied for FGMs at the small domain near crack tip, and the
non-homogeneous term is very small compared to the standard domain
integral. We have given the error estimation in terms of domain size,
material properties and their gradients. The numerical results for both two-
dimensional and three-dimensional problems show that the method is
accurate and efficient. The advantage of the method is that, it does not
require the input of material gradients and the existing finite element codes
can be used for FGMs without much additional work.

~ Figure 5 and 6 show some of the cracked geometries we have solved using
both analytical and numerical methods. Figure 7 shows the solution of mode
I stress intensity factor vs. the position of the crack tip in the FGM for linear
material variation in the three-layered three-point-bending specimen shown
in Figure 6, where h/H =0.1. The geometry is the case that the interlayer of




FGM is considerably thin compared to the two bulk materials. The solutions
of this kind for various #/H and material variation form a complete solution
for the three point bending specimen. Usually tough materials such as metals
have lower modulus than brittle materials such as ceramics. From this figure,
when the crack travels from tough side (the side with smaller modulus) to
brittle side (the side with larger modulus) the crack tip stresses increases.
When the toughness of the two bulk materials are different, it is expected to
vary along the thickness of the FGM and can be written as T(a - H)/H) in
the FGM. Then, for stable growth in the FGM we have: (a) the energy
release rate is equal to the toughness, and (b) the rate of change of energy
release rate with respect to the crack length is less than that of the toughness.
For unstable growth, in (b) the “less” is replaced by “greater”. Let’s look a
special case where the toughness is constant across the thickness of the
FGM. From the figure, we see in this special case that when material #2 is
much softer than material #1, E,/E, <<1, the crack growth is likely to be
stable. This is especially true when the crack tip is close to material #2.
When material #2 is stiffer than material #1, the crack growth is likely to be
unstable. In general, if the toughness varies with position and the crack is
close to material #2 with E,/E, <<1, it is likely to be stable growth since the
drop of the slop in the figure is very strong in the region and it is likely to
overcome the drop of the toughness. Figure 8 is the case that »/H =0.5 and
“other parameters are the same as Figure 7. From the two figures we see that
the trend of these curves has a dramatic change as the percentage of the
FGM changes, and this is especially true for those curves with E,/E, <1. In
most part of Figure 8 the stress intensity factor increases as the crack length
increases. This means that if the increase of the toughness at the crack tip as
the crack length increases is not as fast as the stress intensity factor, it is an
unstable growth for the crack tip traveling at most part of the FGM and for
every E,/E,. In the discussion of the crack growth, we have assumed that
the crack propagates along the original direction, since these are the cases
where geometry, loading and material are symmetric with respect to the
crack line. A first order approximation model, which is based on the local
homogeneity, has been used by us to examine the crack propagating
direction for several cracked FGM geometries. The model also predicts that
crack grows along its original direction when everything is symmetric.
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(c) Further Work under Consideration

Our further work, including the work being carried on, concentrates on the
following unsolved problems relating to the understanding of FGMs’
behavior as well as the implication of these understandings on the design
aspects and material selection for the Hi-Temp purpose:

e Continue our study in micro-mechanical modeling of residual stress
under thermal loading. Carry out more detailed analysis on the micro-
stress concentration by investigating more FGM systems and more
geometries so that more insight can be obtained regarding to sensitivity
of local stress concentration to FGM volume percentage and material
gradients. Morever, include cyclic loading and combined thermal-
mechanical loading. Advanced aspect on crystal plasticity theory to
account for the metal particles’ detailed deformation will be developed.

e Plastic and visco-plastic mechanism at the crack tip region in FGMs
under thermal, mechanical, and combined thermal and mechanical
loadings, including detailed characterization of the crack tip field under
these loadings and for various material gradient effects. This will involve
both analytical and large scale finite element computation studies. For the
non-linear finite element analysis for non-homogeneous cracked
materials, the effective numerical method will be investigated.

¢ Develop a phenomenological theory based on experimental evidence, or
from micromechanics at a smaller scale which can account for the
interaction of the two particles phases, to characterize the toughness of
FGMs; determine the crack propagation in terms of various parameters
including material gradients and the crack tip position; and also
determine the crack path, the direction of deflection, using second order
and more accurate theory.
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CRACK DEFLECTION IN FUNCTIONALLY
GRADED MATERIALS

PEI GU and R. J. ASARO
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University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0411, U.S.A.

(Received 18 April 1996 ; in revised form 7 August 1996)

Abstract—Small crack deflection in brittle functionally graded materials (FGMs) is studied. The
FGMs are modeled as simply nonhomogeneous materials, i.e., the effect of microstructure is
neglected and the material property variation is considered to be continuous. Considering local
homogeneity and the small scale inelasticity of brittle materials, the toughness is taken to be
independent of direction ; therefore, the crack propagates along the direction of maximum energy
release rate, or the direction which gives a vanished mode 11 stress intensity factor. Kink directions
for several specimens which may be used to experimentally study fracture behavior of FGMs are
calculated. It is shown that material gradients have a strong effect on the kink direction when the
crack is at the central region of a FGM, whereas they have little effect when the crack is close to the
boundaries of the FGM. © 1997 Elsevier Science Ltd.

1. INTRODUCTION

In functionally graded materials (FGMs), although the absence of sharp interfaces does
largely reduce material property mismatch, cracks occur when they are subjected to external
loadings (Yamanouchi et al., 1990 ; Holt ez al., 1993). Fractures induced by these cracks
may in large part determine the overall mechanical and thermal-mechanical responses of
FGMs. The need to understand, quantify and improve the toughness of FGMs has brought
interest in a fracture mechanics methodology for such materials. In our recent work (Gu
and Asaro, 1997), stress intensity factors of several specimens composed of FGMs were
solved ; the effect of material gradients on near-tip fields was determined; and possible
fracture criterion was discussed. In this paper, we address crack defiection (or kinking) in
brittle FGMs, i.e., for crack with arbitrary orientation, we study the direction of its
extension when the critical condition is met. Here, brittle FGMs are those having strictly
linear response. An example is the Si-C FGM system in which both material phases are
brittle. For those FGMs made of metal and ceramic phases, the present model gives an
approximate solution if the crack is on the brittle-behaved ceramic-rich side. If the crack is
at the metal-rich side, its propagation is primarily via plastic mechanisms. Our study aimed
at non-linear crack tip behavior is ongoing (Gu and Asaro, 1996), and will be discussed
elsewhere.

The crack deflection model is developed in the same spirit as that for homogeneous
materials (Cotterell and Rice, 1980) and for bimaterials with interface cracks (He and
Hutchinson, 1989). The crack tip stress and displacement fields of FGMs, as briefly dis-
cussed in Section 2, take the same forms as those for homogeneous materials. Based on this
fact, the asymptotic problem, which has a homogeneous body, is employed to study the
crack tip behavior. Considering the local homogeneity and small-scale inelasticity of brittle
materials around the crack tip, the toughness is taken to be independent of direction at a
fixed point. It follows that the crack propagates along the direction of maximum energy
release rate or the direction in which the mode II stress intensity factor vanishes. The kink
direction is a function of the external loading, the geometry, and elastic property’s gradients
of a given specimen. After a short discussion on crack deflection model for homogeneous
materials and for bimaterials in Section 3.1 and Section 3.2, we present that for FGMs in
Section 3.3, in which the asymptotic problem based on the K-field and the directional
independence of the toughness are discussed in detail. Kink angles for four-point bending
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specimen, double-cantilever beam and center cracked plate are calculated in Section 4, and
the following qualitative results are obtained from the solution. For the four-point bending
specimen, the crack intends to grow to the more compliant side. For the double-cantilever
beam and center cracked plate, when the crack is at the middle of the specimen or at the
compliant side, it intends to grow to the more compliant side, whereas when the crack is at
the stiff side it intends to grow to the stiffer side. The material gradients do have a strong
effect on the kink angle when the crack is at the middle of the FGM ; but the effect is small
when the crack is close to the boundaries of the FGM. We also investigate crack propagation
in a compositionally graded interface. It is found that of the two Dundurs’ parameters, «
and f (see eqn 12), the effect of the former on the kink angle is stronger than the latter.

2. CRACK TIP FIELDS OF FGMs

For the purpose of studying crack kinking, the major results of the crack tip fields in
FGMs are highlighted ; detailed discussion can be found in Gu and Asaro (1997). The
functionally graded material shown in Fig. 1 is considered as a nonhomogeneous material
whose material properties vary continuously. Stresses near the crack tip have a square-root
singularity, and singular terms of the stresses are of the form:

,,(9)+ 6”(6)+ "”(0) )]

where i, j=1,2,3; r and § are the polar coordinates shown in Fig. 1. The dimensionless
angular functions &/(6), ¢/ (6) and ¢/ (6) are the same as those for homogeneous materials.
The result is independent of the form for material properties and the orientation of the
crack. The stress intensity factors K, K;; and K, are functions of the material gradients,
external loading, and geometry. Material gradients do not affect the order of the singularity
and the angular functions, but do affect the stress intensity factors. As a result the near-tip
stresses have the same form as that for a homogeneous material. It can also be shown that
the near-tip displacements take the same form as that for homogeneous materials, and this
is independent of material gradients and the orientation of the crack. For plane stress and

plane strain problems, they are of the form:

Oy =

K, K,
2E(0) ”1(9)““ 2E0)

U=

L u0) @

where E'(0) is the Young’s modulus at the crack tip, and the angular functions, u/(6) and
] (6), are the same as those for homogeneous materials.

Having the near tip stress and displacement fields, the energy release rate of the crack
tip is obtained as

2 2 2
Kl KII ~KIIJ

=FOTEO T 20

3

Here, u(0) is the shear modulus at the crack tip. The above equation is again independent

i e |

x T

material properties:
E(y), v(y)

Fig. 1. A crack in a FGM which has continuous variation of material properties.
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of the form for the material properties and the orientation of the crack, and has the same
form as that for homogeneous materials. The path-independence of the J integral (Rice,
1968) holds if the crack is perpendicular to the direction along which material properties
change ; this is implied in Rice’s original proof for homogeneous materials. Using the near
tip fields obtained above, it can be shown that the J integral is equal to the energy release
rate for the crack perpendicular to the direction along which material properties change.

For in-plane problems, the complex stress intensity K = K;+iK}, for FGMs has the
following generic form

=|K|e¥, 4)
where
Kll
=tan~'— 5
v X ©®)

is the phase angle of the complex stress intensity factor. The phase angle measures mode
mixity, i.e., the proportion of the shear traction to the normal traction ahead of the crack
tip, since

g
Y = tan™’ (—ﬁ) . (6)
aJ’)’ 6=0,r-0

The complex stress intensity has the following dimensional form:
K=TL'?Y, (7

where T is a representative stress magnitude, L is a characteristic length and Y is a
dimensionless function which relates to the geometry of the problem and material proper-
ties. Both the phase angle and the dimensional form are consistent with those for homo-
geneous materials.

3. MODELING OF CRACK DEFLECTION

A number of studies have been performed for crack deflection in homogeneous
materials and bimaterials with interface cracks. Before discussing the model for FGMs, we
give a brief review of some results for homogeneous materials and bimaterials in Section
3.1 and 3.2, respectively. Since the interest is crack extension initiation, we concentrate on
small kinks, where the kink length is much less than the length of the pre-existing cracks
(main cracks).

3.1. Homogeneous materials

Stress intensity factors at the kinked crack tip uniquely characterize its near-tip fields;
therefore, they are the parameters to determine the deflection direction at the load when the
crack starts to propagate. The stress intensity factors for the kinked crack in a homogeneous
material have been solved for elsewhere, including Palaniswamy and Knauss (1978) and
Lo (1978). The latter detailed a method for solving crack kinking problems using integral
equations which are formulated by the continuous distribution of dislocations: a method
valid for both finite and infinitesimal (small) kinks. The idea is essentially to remove the
tractions which are caused by the stress field of the main crack in the kinked crack before -
kinking. For the infinitesimal kink, since the kink length is much smaller than the size of
the K-dominance zone of the main crack, the loading is the two stress intensity factors, K|
and K, of the main crack, and the stress intensity factors of the kinked crack, K¥and K},
are obtained in terms of K, and K,,. This is the asymptotic problem: a semi-infinite crack
in the homogeneous material which is loaded by the K-field of the main crack characterized
by K; and K,;; the propagation of the main crack is controlled by its K-field. At large
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distances from the semi-infinite crack tip, the stress field approaches the K-field of the main
crack. Near the semi-infinite crack tip, the stress field is perturbed from the K-field of the
main crack because of the kinking. By dimensional analysis and linearity, the stress intensity
factors of the kinked crack are expressed as

K= C(9)K;+ C12(9)Ky,
K} = Cy) (9) K+ Coy (9) Ky, 3)

where ¢ is the angle between the kink direction and the main crack, and C,;, Cy;, C;; and
C,, are coefficients which can be determined by Lo’s method. For finite kinks, K¥and K%
must be obtained by solving a full boundary value problem considering the load, the
geometry of the specimen including both the main crack length and the kink length.

If there is only mode I loading, the crack would extend along the direction of the pre-
existing crack. This direction is the direction of maximum energy release rate. For mixed
mode problems, the two often used criteria are the maximum energy release rate criterion
(Cotterell, 1965) and mode I type criterion (also referred to as local symmetry criterion,
see Cotterell and Rice (1980) and Goldstein and Salganik (1974)). The former states that
the crack propagates along the direction of maximum energy release rate, and the latter
that the crack grows along the direction for which the mode II stress intensity factor
vanishes. Kink directions determined by the two criteria are consistent : it was shown that
the difference is less than 1 degree for almost all loading combinations except the case in
which the shear mode is overwhelmingly dominant where the difference is then about 2
degrees (He and Hutchinson, 1989).

For small ¢, using first order approximation, Cottereil and Rice (1980) were able to
analytically evaluate those coefficients in (8) as

1
C, = —-<3cos£ +cossjﬁ>,

4 2 2
Cpp, = — % (si‘n% +sin?),
C,y = i— <sin% +sin %),
C,y = 21‘- (cosg +3 cos%d—)) ®

They showed that stress intensity factors calculated by using (9) are in good agreement
with those exact solutions for ¢ up to 40 degrees: the error is less than 5%. They also
showed that, by substituting the approximation (9) into (8), the energy release rate is locally
a maximum for the mode I path (the path with a vanished mode 11 stress intensity factor).

3.2. Bimaterials with interface cracks
For an interface crack, stresses have an oscillatory singularity, and both stress intensity
factors and angular functions involve Dundurs’ parameters, i.e.,

Re(Kr) &

a;(0,
o (6,)+

where K = K,+iK,,, and

Im(Kr")

/2nr

g;; = -”(9 &+ —

ae), (10)

\/27
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1—
e.=517;1nr_£. , (11)

In (10), B is one of the two Dundurs’ parameters. The Dundurs’ parameters (Dundurs,
1969), « and B, are defined as

"= iy (k2 +1) = pa(ky +1)
(e + 1)+ pa (e +1)°

_ (Ko =1) = pa (6, = 1)
TG+ D)+ +1)° (12).

where u, and y, are the shear moduli of the two bulk materials ; x; = 3 —4v, for plane strain
and k; = (3—v;)/(1+v,) for plane stress (i = 1, 2), with v, and v, being the Poisson’s ratios
of the two bulk materials. The complex stress intensity factor, X, has the dimensional form

K=TL'V**y, (13)

where T is a representative stress magnitude, L is a characteristic length and Y is a
dimensionless function which relates to the geometry of the problem and Dundurs’
parameters. ’

For the interface crack kinking problem, the stress intensity factors of the kinked crack
are not unique in the sense that they are dependent on the kink length. For small kinks,
dimensional analysis and linearity give the relationship between the complex stress intensity
factor of the kinked crack K* and that of the interface crack K as

K* = ¢(¢, 0, f)Ka" +d(¢, o, p)Ka™*, » (14)

where a is the kink length and (7) denotes the conjugate of the complex variable. It is seen
that only when § = 0 (i.e. ¢ = 0) K* is independent of the kink length. A complete solution
in this case was obtained by He and Hutchinson (1989) using the integral equation method.
The kink length dependence case, f # 0, was studied by Mukai et al. (1990) and Geubelle
and Knauss (1994). The results showed that K* and the kink angle are strongly dependent
on kink length for sufficiently large B. It was concluded by the latter that this is due to
“rotational stress and deformation fields” (Symington, 1987) at the crack tip, which
extended to a region far outside of the contact zone. They suggested that the kink length a
should be viewed as a property of the bimaterial combination, and be determined by fitting
experimental data.

Whether the interface crack stays on the interface or kinks into one of the bulk
materials is decided by the ratio of the energy release rate for the crack to extend on the
interface ¥, to that for the crack to kink ¥%,, and the ratio of the interfacial toughness I'; to
the toughness of the bulk materials I',. Kinking is thereby favored if

L

T a1s)

9
9,
3.3. Functionally graded materials

Crack propagation is the competition between the energy release rate and the toughness
of the material. In order to address crack kinking in FGMs, we need to study both physical
parameters.

The energy release rate of a kinked crack in a FGM depends on the geometry, the
loading, and the material properties including material gradients. The exact solution for it
has to be obtained from the solution of the full boundary value problem. For small kinks,
the solution may be obtained in an asymptotic way similar to that outlined in Section 3.1.
In Section 2, we have noted that crack tip fields for FGMs have the same forms as those
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Homogeneous material

K-field of the E

main crack
asr—-oo

o Yo

Fig. 2. Local homogenization near the crack tip region in a FGM : a homogeneous body is loaded
far away from the tip of a semi-infinite crack by the K-field of the crack in the FGM (the asymptotic
problem).

for homogeneous materials, and only the stress intensity factors are functions of material
gradients. The elastic constants appeared in the displacement near-tip field and the energy
release rate are those at the crack tip. This suggests that, to study crack kinking one can
consider the asymptotic problem shown in Fig. 2: a homogeneous plate, which has a semi-
infinite crack and the elastic constants at the main crack tip, is subjected to the loading
characterized by the stress intensity factors of the main crack. The only difference between
the asymptotic problem for FGMs and that for homogeneous materials is that here the
elastic constants appearing in the problem are those at the main crack tip which change
with its position, whereas for homogeneous materials those elastic constants do not change
with the position of the main crack tip. Knowing the asymptotic problem, stress intensity .
factors of the kinked crack can be solved by the same technique to solve those for homo-
geneous materials. The local homogenization results in that the relationship (8) for homo-
geneous materials holds for FGMs. Specifically, the coefficients C;; in (8) are the same as
those for homogeneous materials, and material gradients affect the stress intensity factors
of the kinked crack K* only through the stress intensity factors of the main crack K. These
coefficients can be obtained accurately by using the integral equation method to solve the
asymptotic problem in Fig. 2, which is a homogeneous crack-kinking problem; as men-
tioned before, they are well approximated by the expressions in (9) for small ¢.

The above approach for crack kinking is valid if the kink length is sufficiently smaller
than the size of K-dominance zone. To examine the K-dominance zone, the asymptotic
solution over the full field solution ahead of the crack tip, ¢%,/¢/,, is plotted in Fig. 3 for
the center cracked plate subjected to remote stress shown in Fig. 4(d), where h/H = 1. It is
assumed that the width of the plate is much larger than the crack length. The crack is
perpendicular to the direction of material property variation, and the variation is in the
exponential form which is the same as that in Gu and Asaro (1997) and which will also be
stated in the next section. It is seen that the size of the dominance zone decreases as 7,
which is the measure of material gradients, increases. At 10% of the crack length ahead of

1 .1 4 T T A ] M ¥ 7
1.12
1.10 h/H=1 E
1.08 ) r
th=2.4 3

1.06 9 k
1. ]

1.04 0 3
1.02 ‘

1'09 .00 1.02 1.04 1.06 1.08 1.10

x/a

Fig. 3. Comparison of asymptotic solution with full field solution.
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Fig. 4. Several Specxmens () Three-point bending specimen. (b) Double-cantilever beam. (c) Four-
point bending specimen. (d) Center cracked plate. The material properties vary along the vertical
direction.

the crack tip the error between the exact and asymptotic solutions for homogeneous
materials is 5%, whereas it is 7% for y4 = 1.2, and 14% for yh = 2.4. Note that, in the case
of yh = 1.2, the ratio of the Young’s modulus at the upper boundary to that at the lower
boundary is about 11. It is fair to say that, for material gradients which are not too large,
the radius of K-dominance zone would be in the size comparable to that of homogeneous
materials, at least, not reduced much from that of homogeneous materials. For interface
cracks in bimaterials and sandwich structures, the size of the dominance zone was inves-
tigated by O’'Dowd er al. (1992), Shih (1991) and Gu (1993).

The often used techniques to make FGMs are thermal spray, powder processing and
chemical vapor deposition (CVD). The microstructure of these FGMs depends on these
manufacturing processes (see Yamanouchi er al., 1990 ; Holt et al., 1993). For a real FGM,
typical micrograph shows discrete structure. If the FGM is made of material phases A and
B, the A-rich side has a dispersive structure with B particles in the A matrix ; at the B-rich
side A particles are in the B matrix ; and in the middle region between the two sides, it is a
skeletal structure due to the connectivity of both phases. For such complicated structure,
the characterization of its toughness is an open issue at this moment. The toughness is
likely a function of the position of the crack tip, and may also depend on the direction
along which the crack propagates and the loading phase angle. In this study, we neglect the
effect of microstructure; we study the idealized case, simply nonhomogeneous materials,
i.e., the materials are those with a continuous change of material properties. This means
that the microstructure of a FGM is sufficiently fine that the continuum model gives
satisfactory predictions.

For the simply nonhomogeneous material, since we study small kink in the locally
homogeneous body controlled by the K-field (the asymptotic problem shown in Fig. 2) and
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small-scale inelastic deformation around the crack tip, the toughness of the non-
homogeneous material is taken to be independent of direction at a fixed point. If the
cohesive stress p, the inelastic stress in the cohesive zone ahead of the crack tip to restrain
separation for creating free surfaces (Dugdale. 1960 ; Barenblatt, 1962) is not only a function
of separation but also position, say p(d, ¥), the toughness of the FGM at the position y
may be expressed as

r= J " 56,3 43, (16)

0

where 9, is limit separation at y. This is the result of applying the J integral around the
cohesive zone of the homogeneous body in Fig. 2 (see Rice, 1968).

" For some FGMs, their micrograph may show layered structures, and these discrete
microlayers have varying compositions and thus form the macroscopic material gradients
along the thickness direction. If the crack lies on one of the interfaces, it may behave like a
real interface crack. The mechanics of elastic interface fracture was established (Rice, 1988 ;
Hutchinson, 1990). The criterion for an interface crack to grow on the interface is

g=TW), (17)

where  is the phase angle. The condition for crack kinking into one of the two adjacent
layers was stated in Section 3.2. Plastic interface fracture was investigated by Shih and
Asaro (1988, 1989) and Shih (1991). In this study, since the FGM is considered as a simply
nonhomogeneous material, the possibility of having discrete microlayers is excluded.

Considering the above, the kink direction for the FGM is the direction of maximum
energy release rate or that in which the mode II stress intensity factor vanishes. Both
directions relate to the geometry, loading and the material gradients. The two criteria for
FGMs, like those for homogeneous materials, are also consistent, since they are built on
locally homogeneous materials.

The locally homogenized model is expected to work well for brittle, simply non-
homogeneous materials, as discussed above. For those FGMs in which plastic mechanisms
are involved in a sufficiently large region around the main crack tip, or microstructural
gradients are presented at the tip region, further investigation is needed to determine these
effects.

4. SOLUTIONS AND IMPLICATIONS

An immediate consequence of the present model is that, for the three point bending
specimen shown in Fig. 4(a), the crack extends vertically ahead of the main crack tip along
its direction, since the crack tip only has a mode I stress intensity factor (both geometry
and loading are symmetric). The conclusion is independent of the form of the material
property variation, and is the same as that in the case of a homogeneous material.

Stress intensity factors for the double-cantilever beam, Fig. 4(b), and the four-point
bending specimen, Fig. 4(c), were obtained by Gu and Asaro (1997), where material
properties were assumed to follow the exponential form:

E'(y) = Eoe”,
Vi(y) = vo(l+py) e”. (18)

In (18), y and p are material constants representing the material gradients; E, and v, are
the values of these elastic properties at y = 0. For plane stress problems, E'(y) = E(y) and
v'(y) = v(»), where E(y) and v(¥) are Young’s modulus and Poisson’s ratio, respectively ;
for plane strain problems, E'(y) = E(3)/[1 —v(»)?] and v'(y) = v(»)/[1 —v(3)]. The shear
modulus, u(y), relates to Young’s modulus and Poisson’s ratio by
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D — (19

HO) = 3T v (] )

The above forms provide analytical flexibility and lead to somewhat simple forms for the
field equations. Using (18) and (19), it is shown that for a traction boundary value problem,
the stress field depends on the material parameter ;, which is related to the moduli at the
upper boundary E;, and at the lower boundary E; as

h_ E
W=Zmﬁ' (20)

In (20), L = h+ H is the thickness of the FGM and 4 a characteristic length. The parameter
p in (18) does not affect the solution. When the modulus at the upper boundary is larger
than that at the lower boundary, for example, the upper side is ceramic and the lower side
is metal, the parameter 74 is larger than zero; for the case of a homogeneous material, it is
zero. We examine the kink direction in the double-cantilever beam and the four-point
bending specimen. ’

For the double-cantilever beam, the energy release rate ¢, normalized by M/h'?, is
plotted vs the possible kink angle ¢ in Fig. 5, where ¢ is positive when the crack goes

25 T T T T T
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! ©
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Fig. 5. The energy release rate for the double-cantilever beam for (a) h/H =1, (b) #/H = 0.1 and
(c) h/H = 10. .
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Fig. 6. Kink angle for the double-cantilever beam.

downwards (Fig. 2). When h/H =1 (the crack is at the middle of the strip) and #/H = 10
(the crack is at the compliant side), the energy release rate is enhanced if ¢ > 0; and it
increases as the material gradient, measured by E,/E}, increases. When #/H = 0.1 (the crack
is at the stiff side), the trend is different: the energy release rate is enhanced if ¢ < 0; it
decreases as the material gradient, E,/E}, increases. For some crack positions, the material
gradient does have a strong effect on the energy release rate. For example, at #/H = 1, the
maximum energy release rate for E,/E; = 20 is about 20, whereas it is 12 for the homo-
geneous case, E,/E; = 1. The implication of these qualitative behaviors is that when the
crack is at the position where h/H is sufficiently large, the crack is kinked to the more
compliant side, or downwards; when the crack is at the position where 4/H is small, the
crack is kinked to the stiffer side, or upwards. For the case of #/H = 1, the kink angle, the
angle at which maximum energy release rate occurs, is 0° for homogeneous materials. This
is a well known result, and is due to the symmetric loading and symmetric material
properties in this case. It is also seen that, for the cases of #//H = 1 and h/H = 10, the kink
angle increases as the material gradient increases. Kink angles for the three crack positions
are plotted in Fig. 6. It shows that for small y, the kink angles for the three crack positions
are quite different, but as y increases they become closer. When h/H = 0.1, the kink angle
changes from negative sign to positive sign, i.e., upward kink becomes downward kink, at
yh & 1.5 as it increases. But at this crack position, it is seen from (20) that E./E; = 40 for
yh = 0.34. This tells us that the portion of the curve where yh > 0.34 is no practical use,
since E,/E; > 40 in that portion and such large difference in elastic moduli may not appear
in a FGM, at least, at the present time. It is noted that when the crack is at the middle
position, the material gradient does have a strong effect on the kink angle, whereas it has
little effect for the crack close to the upper and lower boundaries. ‘

For the four-point bending specimen, it is assumed that the horizontal distance between
the crack tip and the loading is large enough. As shown in Fig. 7, the maximum energy
release rate is attained when ¢ is positive, and increases as the material gradient, E,/E},
increases for #/H =1, 0.1 and 10. When 4/H = 0.1 and 1, the increase of it is significant.
For example, at A/H = 0.1, the energy release rate is 0.003 for the case of homogeneous
materials, and 0.017 for E}/E; = 20; at h/H = 1, it is 8.41 and 20.02 for the two cases,
respectively. Kink angles for the three crack positions are plotted vs the material gradient
yh in Fig. 8. The figure shows, for the four-point bending specimen, yh does not have a
strong effect on the kink angle. When the crack is at the middle of the beam, the difference
of it between the case of a homogeneous material and that of E,/E; = 20 is less than 2°.
When the crack is at h/H = 0.1 and 10 the difference is even less. In experiments, such small
difference is difficult to be measured. '

For the center cracked plate shown in Fig. 4(d), the energy release rate, besides h/H
and yh, also varies with the crack length a/h. For the case of a/h = 1, kink angles are shown
in Fig. 9. The trend of these curves is similar to that in Fig. 6 for the double-cantilever
beam.
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Two layers can be jointed by a compositionally graded material (FGM) sandwiched
between them, as shown in Fig. 10. It reduces the mismatch of the bimaterial without the
interlayer and gives better thermal-mechanical performance for the whole system (Gian-
nakopoulos et al., 1995). Also, for a bimaterial, the interface, the transition zone, isa FGM
microscopically. For some bimaterials, the thickness of the zone is at the level that it may
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Fig. 9. Kink angle for the center cracked plate.
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Fig. 10. A crack in a compositionally graded léyer between two dissimilar materials.

not be neglected in analyzing the fracture of the interface. We use the above method to
study the crack propagation inside the compositionally graded layer. The main crack shown
in the above figure is parallel to the boundaries of the graded layer. The thicknesses of the
two bulk materials are considered as much larger than the thickness of the interlayer. For
a crack on a sharp interface, as discussed in Section 3.2, the energy release rate of the
kinked crack is dependent on the extension length, and there is a contact zone in the region
very close to the main crack tip due to its oscillatory singular field. The solution to the
crack deflection problem in such case is not unique, except one of the two Dundurs’
parameters, f, vanishes. It is seen that by introducing the transition zone to the interface
the oscillatory singular field near the main crack tip, which is physically unacceptable, is
removed, and therefore the problem of non-uniqueness for crack kinking does not exist.
The thickness of the graded layer and the position of the crack inside it are specified
by h and H shown in Fig. 10. Here, since the thickness of the graded layer is considered
much Jess than the length scale of the two bulk materials, the loading is represented by the
complex stress intensity factor K~ of the bimaterial problem without the graded layer. The
complex stress intensity factor K of the crack inside the graded layer is expressed as

K = ge“hK~. Q1)

The equation is obtained by dimension analysis and linearity consideration. Both ¢ and w
in above expression are functions of Dundurs’ parameters, « and f, the position of the
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Fig. 11. The effect of x on kink angle for a crack inside the compositionally graded layer.

crack inside the graded layer, h/H, and the form of the material gradients. The former can
be evaluated by using the J integral. For the case that the elastic modulus follows the
exponential form given in (18) and Poisson’s ratio is a constant,

1=F @)

q= (1 +a)h/2(h+H)(1 _ 1)H,‘2(h+h’) :

For h/H = 1, Yang and Shih (1994) gave a general expression to estimate w for any form
of material property variation in terms of a known bimaterial solution. They compared the
results obtained from the approximation with those from finite element analyses, and it
was concluded that the approximation was quite satisfactory. We use their expression to
examine crack deflection in the graded layer for the case where h/H =1 and material
properties follow the above mentioned form. In Fig. 11, we plot the kink angle for a = 0,
0.4 and 0.8, where f = 0 and

Im(K * h')

— 23
Re(K* ) @)

Q = arctan

The effect of « on the kink angle is stronger for small Q than for large Q. In Fig. 12, we
plot the kink angle for f = 0 and 0.2, where « = 0.4. Since for many engineering materials
B is less than 0.2 (see Suga et al., 1988), the two figures show that B has a weaker effect on
the kink angle than «. The results which are obtained from the linear variation of the
material properties also support the observation.

The current study provides a means to assess crack deflection in a special set of FGMs,
simply nonhomogeneous materials. From the above solutions, it is seen that material
gradients do have a strong effect on the kink direction when a crack is at the central part
of the FGM:s. The solutions may be used in either testing the fracture behavior or measuring
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Fig. 12. The effect of £ on kink angle for a crack inside the compositionally graded layer.
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the toughness of FGMs. On the other hand, this study can be viewed as an initial effort
for crack deflection in real FGMs: the effect of microstructure, i.e., the effect of local
inhomogeneities around the crack tip on both the energy release rate and the toughness, is
up for further investigation.
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Abstract—This paper addresses failures near irregularities on the interface between a film and a
substrate. Several boundary value problems, including two-dimensional and three-dimensional
problems, involving inclusions of various shapes placed on the interface, are considered. The loading
is induced by the lattice parameter mismatch between the film and substrate. Stresses near the
interface and the inclusion boundary are of particular interest. The solutions show stress con-
centration around the inclusion boundary ; in fact, 2 logarithmic singularity exists at the intersection
of the inclusion, film and substrate. Emphasis is placed on identifying failures associated with high
stresses near the inclusion. A theoretical prediction of the misfit strain to cause adhesion failure is
obtained. The driving force for dislocation emission from the inclusion is calculated, and it is shown
that dislocation emission from inclusions is favoured under a sufficiently large misfit strain. © 1997,
Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

Thin films are widely used in electronic components and other advanced devices. Because
high residual strains in the films due to either thermal expansion coefficient mismatch or
lattice parameter mismatch between the films and substrates can cause device failures
related to dislocation nucleation and interfacial cracking, the study of these mechanisms is
a subject of interest. Many works addressing such problems can be found in the open
literature. Examples of recent development include solutions to a large number of interfacial
cracking problems by Hutchinson and Suo (1991), a detailed treatment for threading
dislocations in the thin films by Freund (1993), and solutions to various stress-related
problems in silicon technology, including film-edge induced stresses and dislocation gen-
eration in substrate due to these stresses, by Hu (1991).

The interfacial microstructure of a film/substrate system controls the performance of
the system in more ways than one. It appears that this aspect has been overlooked by many.
Recent experiments (Perovic et al., 1989) have shown that §-SiC precipitates are formed
on the interface between the Ge,Si,_, layer and Si substrate by molecular beamn epitaxy,
and dislocations emit from these precipitates when a critical particle size is reached. Also,
it is possible that the surface of the substrate is not a perfect plane, i.e., there are irregularities
on the substrate. Inclusions on the interface are sources of stress concentration, and
therefore are the possible sites for failure initiation. Besides dislocation nucleation, adhesion
failure occurs if stresses on the interface exceed its adhesion strength. In this paper, we
examine the stress concentration near these inclusions, and attempt to identify failures
resulting from these high stresses. For this purpose, an inclusion on the interface between
a thin film and substrate is considered, and the loading arises from the lattice parameter
mismatch between the film and substrate. In this study, we take the inclusion, film and
substrate as elastically deforming bodies, i.e., the problem is solved by elasticity theory.
The inclusion can be regarded as a local inhomogeneity. So, it is assumed that both the
thickness of the film and the substrate are much larger than the size of the inclusion. Under
these assumptions. we are able to obtain several analytical solutions for two-dimensional
and three-dimensional inclusion problems.
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The plan of this paper is as follows. In Section 2, the two-dimensional problem, an
elliptical inclusion on the interface between a film and substrate, is analyzed. This idealized
case admits an analytical solution with a relatively simple form which is obtained by
complex variable method. In Section 3, the stresses on the interface between the film and
substrate for the two-dimensional problem are examined. It is shown that high stresses are
generated near the inclusion; in fact, the shear stress has a logarithmic singularity at the
intersection of the inclusion, film and substrate. A theoretical prediction for the misfit strain
to cause adhesion failure is obtained. Section 4 addresses the bending effect due to the misfit
strain. The three-dimensional problem is solved in Section 3. Section 6 discusses dislocation
emission from the inclusion, where the driving force for dislocation emission is derived,
and it is shown that dislocation emission is favored for a sufficiently large misfit strain.

2. TWO-DIMENSIONAL PROBLEM: AN ELLIPTICAL INCLUSION

The mathematical problem shown in Fig. 1 is a film of thickness # bonded to the
surface of a substrate. At the origin, there is an elliptical inclusion on the interface between
the film and substrate. The major and minor axes are a and b, respectively. The film has a
lattice parameter «, which differs from that of the substrate and inclusion, «,. The inclusion
and the substrate could have different lattice parameters, but this possibility is not con-
sidered here. The interface between film and substrate and the interface between film and
inclusion are assumed to be coherent, so that a stress field is induced in the film, substrate
and inclusion. Far away from the inclusion, its solution is known: the substrate is stress
free and the film is subjected to biaxial uniform tension or compression

, ___2#1(14“’1)80, )
1—v
where
_ U-s_af
g = 0 2)

Both the film and substrate have shear modulus g, and Poisson’s ratio v, while these elastic
constants for the inclusion are u, and v,. For the semiconductor layered systems, the
difference in elastic properties between the film and substrate is usually small ; it is neglected
here. As stated in the introduction, the film thickness is much larger than the inclusion size.

To solve the boundary value problem, one must match lattice parameters across the
interfaces between the film and substrate and between the film and inclusion. On the
interface between the film and substrate, there is a lattice parameter mismatch in the x and
z directions (the z axis is perpendicular to the x and y axes shown in Fig. 1); but on the
interface between the film and inclusion, there is a lattice parameter mismatch in all three
directions, x, y and z. The solution to the three-dimensional problem can be obtained by
considering two two-dimensional problems using an Eshelby-type superposition, as shown

t

Epitaxial Layer
hI X N P o Y
T T X
22 H2 V2
Substrate
M1 v O

Fig. 1. A elliptical inclusion on the interface between a film and substrate.
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Fig. 2. A superposition scheme for solving lattice parameter mismatch problem.

in Fig. 2. First, we match the lattice parameters on both interfaces in the x and z directions,
stretching the film by ¢, in the x and z directions. The state of stress induced by this process
is a uniform biaxial stress, 6., = 0., = 0,. Next, a distribution of traction is applied to the
interface between the film and inclusion so as to free it from stress, Fig. 2(b). In this cut
and paste process, we have neglected the effect of Poisson’s ratio. The stretch of the film
induced a strain &, = —2v,/(1 —v,)&; this strain reduces the lattice parameter in the y
direction of the film. We have also neglected the difference in the lattice parameters in the
y direction. These effects may be neglected if both the film and the substrate have the same
lattice parameter in the y direction and the Poisson’s ratio of the film is very small. We first
solve the problem shown in Fig. 2(b), then the problem for the mismatch in the y direction.

The problem shown in Fig. 2(b) may be solved using the complex variable method
(Muskhelishvili, 1953). Stress and displacement fields are generated by complex potentials
¢ (&) and Y (&) such that:

Gu+ 0y =200+ "),
G‘” —Oxx + 2ia.\'_v = 2[é_¢”(é) + wl(é)]s
2u(u+iv) = k(&) — ¢ () — v (D), (3)

where ¢ = x+iy; k= 3—4v for plane strain; k =(3—v)/(1+v) for plane stress. The -
resultant force along the arc from & = £, to & = &, can be expressed as

F +iF, = ~i[¢(D)+ £ (O +¥(O]IEZE. )

The resultant force due to the traction acting on the inclusion boundary between ¢ = a
and & = &, in Fig. 2(b) is

1 _
) g ImE 30

S = 1=v S
0 Im¢, < 0.

Using a conformal mapping, & = R({+m/{) with R =(a+b)/2 and m =(a—b)/(a+b), the
elliptical inclusion is mapped onto a unit circle. Then, continuity conditions on the interface
between the inclusion and matrix (the film and substrate) can be written as




952 Pei Guer al.

1| _ 2 4m 1 T 4+m _
E[“"”'“) i ORI 7 (r)] [w O e CAORE <r>J
2 24
[cﬁ O+ —— i ¢ (1)+l//1(f)] [05 O+ ———¢2(0) + ¥, (1)} g(0), (6)
(1~ ‘r(l—-m )
where

1
—C(‘L’—- —) Imr>0

g(1) = T
0 Imt <0,

py (1)

C= -

eoR(1—m), Q)

and || = 1. Here, ¢,({) and ,({) are complex potentials defined for the matrix, and 60
and ¥,({) are complex potentials defined for the inclusion.

The solution to the problem is the four potentials which satisfy (6). Also, ¢,({) and
Y1 (0) have to give a stress free state at z = 0. The detailed procedure to solve the problem
is given in the Appendix, and the solution to the elliptical inclusion is obtained in terms of
series. For a circular inclusion, the solution is a simple finite-term solution, which is given
by

o
$1(0) = = C[zﬂﬁ logf“}

Fx +1 27 { { 1
Kk, C in P=1_ [+1 1
Y, () = T 57—2-1[_2-‘-?_*_ R log = :] ¢ () +A 8
where
_ I'(l1+x,) g 9
T (T 4K)QC+k,—1) 2 ©)

and I' = u,/p;. We shall not write here the expressions for ¢.({) and /»({) since the stress
fields in the film and substrate are our interest.

The solution for the elliptical inclusion can be obtained directly in following special
cases: I'=0, =1, and I'=19oc. For I = oo (rigid inclusion), the solution is
1) = 02(0) = () = ¥a(0) = 0. When I' = 1, the problem corresponds to a traction
0ody/ds (ds is the differential arc length of the boundary of the ellipse) acting on the upper
boundary of the ellipse in a homogeneous body. Its solution can be readily obtained by
integrating a point force solution over the upper boundary of the inclusion. Similarly, for
I' = 0, the solution can be obtained by integrating a point force acting on the upper
boundary of the elliptical hole.

A step irregularity on the substrate surface shown in Fig. 3 gives rise to a similar
problem. As before, both the film and substrate have the same elastic properties; there is
no lattice parameter mismatch in the ) direction, and the Poisson’s ratio of the film is very
small. The solution to the problem is obtained by the integration of a point force solution
over 0 < y < a with the point force being ¢,dy. The two potentials are given by

61 = ﬁ[(f ia) log(¢ —ia)— ¢ log &,
0(0) = = 5 (€ ~ia) log( ~ i)~ £log &)+ 5=t ellog(é —ia) ~ logd).  (10)
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Fig. 3. A step irregularity.

We next solve the problem for the mismatch in the y direction. We view the problem
as the one similar to Eshelby’s internal problem, by assuming that there is a uniform
eigenstrain in the upper half of the inclusion (the portion above the interface between the
film and substrate) ¢¥. due to the mismatch in the y direction. The eigenstrain is

\\ —80(1+21_v1> . (11)

The term involving v, represents the effect of the Poisson’s ratio v, in the cut and paste
process discussed before, and the rest represents the effect of the difference in lattice
parameters in the y direction. If there is no lattice parameter mismatch in the y direction,

&y =2 €o- (12)

1—-v

The mathematical problem can be formulated by the complex variable method, see List
and Silberstein (1966). The continuity condition on the interface between the inclusion and
the matrix is the same as (6), except in this case the right side of the first equation is g(t)
and that of the second equation is zero. Here,

(e I
o) = —2-R(] —111)(1— ;) Imz 20 (13)
0 Imt < 0.

This shows that the problem can be solved in the similar way as that in the Appendix. The
two potentials for a circular inclusion are given by

_ r umehR in C'——l {+1
$O= " 2m ['“ ! logf—l:l
_ I ueiR 1_75 § L+] 1
where
I+, %R
A =— (1+x,) 1y &y, (15)

(T+x,)QRM+x,—1) 2~

Finally, we mention that the analysis for the mismatch in the y direction is the first order
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approximation since we assume a uniform eigenstrain in the inclusion; in the real case the
eigenstrain appears to be more complicated.

3. STRESSES ON THE INTERFACE BETWEEN THE FILM AND SUBSTRATE

Having the solution in Section 2, we examine the stresses on the interface between the
film and substrate near an inclusion. For the most part of this section, we assume that the
film and the substrate have the same lattice parameter in the y direction and the Poisson’s
ratio of the film is small, so that the solution for the problem shown in Fig. 2(b) is a valid
solution. For a circular inclusion, the shear stress on the interface is

0'0 1 6 3_p2 p+1
7 (0, 0) = "4;:1+1‘;<,<"p3+ e 108 T

2 1+p? 1
-i-ﬁ i -—+ Rl logﬂ, (16)
P p? p—1

where p = x/a, and is either greater than 1 or less than —1. It has a logarithmic singularity
at the intersection of the film, substrate and inclusion, p = + 1. The singular term is

_ 0o K 1 p+1
GXJ'(p’O)—2n<l"+x2 1+Fx,>10gp—] (17

as p— +1. The expression before the logarithmic function in the above expression is a
logarithmic stress intensity factor, which varies with I', x, and Ka. For fixed k; =k, = 2.6
(plane strain with v, = v, = 0.1), the logarithmic stress intensity factor is the largest when
I' =1, and it vanishes when I" = 0 (hole) and I" = oo (rigid inclusion). The singularity is
so weak that its zone of dominance is very small. This can be seen from Fig. 4, where (16)
is plotted for several I'’s. In this figure, the shear stress for I' = 0 is larger than the shear
stress for I' = 1 except the very small portion near p = 1. Also, the shear stress decreases
quickly to zero, and its effective zone is about 3-4 times the size of the inclusion.

To examine the geometrical influence of the inclusion, the shear stress caused by an
elliptical inclusion is plotted in Fig. 5 for several values of b/a, where we choose I" = 1 and
K1 = K, = 2.6 (plane strain with v, = v, = 0.1). It shows that o,, increases as b/a increases.
This is because the mismatch increases as b/a increases. Also, the shear stress decays more
quickly for smaller b/a.

An inclusion on the interface between the film and substrate can generate high shear
stress. When the inclusion and matrix have the same elastic properties, I'=1 and
K; = Ky = 2.6 (plane strain with v, = v, = 0.1), the shear stress at a distance 0.1z ahead of

>
o
T

0.0 1.0 20 3.0 4.0 5.0
x/a

Fig. 4. Shear stress on the interface between the film and substrate near a circular inclusion.
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Fig. 5. The effect of inclusion geometry on shear stress.

the inclusion (the shear stress is singular at the intersection of the film, substrate and
inclusion) is

6,y = 0.230, (18)

for a circular inclusion. Consider growing a GaAs film on Si substrate, and neglect the
difference in elastic properties between GaAs and Si. For these materials, ¢, = —0.04 and
Eg.as = 85 GPa. Then, (18) gives 6., = —0.9 GPa.

Near a circular inclusion, the normal stress on the interface between the film and
substrate is

00 = k1,7 " 4 14Tk, o (19)

where p = x/a, and is either greater than 1 or less than — 1. We note that it does not have
a singularity as does ¢,,. For T’ = 1 and k, = k, = 2.6 (plane strain with v, = v, = 0.1), the
maximum normal stress which occurs at p = +11is

g, = —0.1g,. _ (20)

If &, < 0, the normal stress is a peeling stress. The above expression shows that a large
compressive residual strain gives a large peeling stress on the interface, which is a driving
force for adhesion failure of the interface. If g > 0, it is a compressive stress. For the
GaAs/Si example, the maximum peeling stress.is 0.4 GPa. Figure 6 shows a,, vs p for
several values of T'.

2.0 A T “t T T

00fF =

20 F =05 .

4no, /o,

=
b/a=1

8008 70 20 30 40 50
x/a

Fig. 6. Normal stress on the interface between the film and substrate near a circular inclusion.
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Fig. 7. Comparison of shear stresses near a circular inclusion and near a step irregularity, on the
interface between the film and substrate.

Near a step irregularity, the shear stress on the interface between the film and substrate
is

0o 1 11—k 1
ax)‘(pao) - "(1+K)[p2+1 - 4 10g<1+ p2>}’ (2])

where p = x/a, and p > 0. The shear stresses on the interface near a step irregularity and
near a circular inclusion are compared in Fig. 7. As expected, it shows that the step
irregularity produces larger shear stress on the interface.

If there are no inclusions and step irregularities on the interface, there are no stresses
acting on the interface. Therefore, adhesion failure may not occur. If the residual strain ¢,
in the thin film causes adhesion failure due to inclusions or step irregularities, we estimate
it from above solutions. Suppose that the interfacial adhesion strength, i.e., the summation
of all atomic bonding forces between the adjoining material surfaces for an ideal planar
interface, is known, and let the critical normal stress be ¢, and the critical shear stress be
7,. Then, from (18) and (20), the mismatch stress g, to cause adhesion failure is given by
the smaller of

|0'0| = 4.3575,
loo| = 100, (22)

for compressive g,. For tensile ¢, this prediction is
GO = 4.35Tb. (23)

In writing (22) and (23), we have assumed that adhesion failure caused by shear occurs at
a distance 0.1a ahead of the inclusion. Besides calculating atomic bonding forces, the
interface adhesion strength can be measured by a number of methods which have been
discussed in Alexopoulos and O’Sullivan (1990). Due to the difficulty in handling these
tests, the data obtained by these methods are usually considered to be qualitative in nature.
It 1s seen that either a large residual strain or poor interface bonding could lead to
adhesion failure. In the GaAs,;Si example discussed above, the film is subjected to com-
pressive residual stress and the normal stress on the interface is a peeling stress. If we
assume that the failure mode is the adhesion failure by the peeling stress, the criterion
predicts that the adhesion failure occurs if o, is less than 0.4 GPa. The development of the
initial failure could lead to large scale fracture, such as film buckling. The mechanics of
film buckling has been studied by Evans and Hutchinson (1984), and the cracking and
buckling processes of a film/substrate system have been characterized in terms of the
behavior of the film and substrate, and the interface bonding by Evans et al. (1988).
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The effect of the mismatch in the y direction can be estimated using the solution for a
circular inclusion given by (14) and (15). The shear stress on the interface between the film
and substrate near the inclusion is

_mer T 6 3-p° p+l
5 (p, 0) =" 1+1_K1(—p3+ > logp_l
mey T 2 14p* p+l
i -z £ 4
2n I'-!-K:( p p? ]ng—l > (@9

where p = x/a, and is either greater than 1 or less than —1; the normal stress is

r I
—3 * — . T
o”(p, 0) Hy&yy A +x,—1 pz + 2 14Tk, p“

25)

We examine the effect of the Poisson’s ratio using (12) for &f. Since the stresses are
proportional to the Poisson’s ratio v, they can be neglected if the Poisson’s ratio is small.
The larger the Poisson’s ratio, the larger its effect on the stress field. Few numerical examples
for the stresses are given below when v, is small, by taking I’ = 1 and x, = k,. At p = 1,
the normal stress is 0.006 g, for v, = 0.01, and 0.06 g, for v, = 0.1. At p = 1.1, the shear
stress is 0.001 @, for v, = 0.01, and 0.01 g, for v; = 0.1. It appears that the normal stress is
larger than the shear stress for the mismatch in the y direction.

4, BENDING EFFECT

If the film and substrate have finite thicknesses, the solution described in the preceding
sections must be corrected. Four self-equilibrating bending moments are applied to the film
and substrate, and two of them in the x-y plane are shown in Fig. 8. We assume the
thickness of the substrate A, is much larger than that of the film A, and the thickness of the
film is much larger than the size of the inclusion R =(a+b)/2. The magnitude of these
bending moments depends on the thicknesses of film and substrate, and is given by

M = 3hho,. ' (26)

These bending moments act at a distance 4,/2 from the bottom of the substrate. For I' = 1
and k, = k,, M does not cause shear and normal stresses at the interface between the film
and substrate, and the stress and strain fields in the film and substrate are given by beam
theory. For I” # 1, the bending moments induce stresses at the interface, which we calculate
as follows.

Note that the two moments in the x direction do not cause stresses on the interface if
the inclusion and the matrix have the same curvature in the y-z plane (the - axis is
perpendicular to the x and y axes shown in Fig. 1). Consequently, it is only necessary to
consider the deformation caused by the two moments shown in Fig. 8. If we use the
displacement field of a homogeneous problem (I' = 1,x, = k1) asa solution to the inhomo-
geneous problem there is a traction jump on the inclusion boundary. The solution may be

4

h

M M

( hs >
A 4 .
Fig. 8. Bending moments acting on the film substrate system.
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corrected by superposing an equal and opposite traction jump on the inclusion boundary.
The traction jump, expressed as a resultant force on the inclusion boundary, is

A L 1
g(1) = ic, 1% +ic; — —2ic, +C3‘L’—CQ;,
2

. M
R3(1—777)'(1—1")——1—,

O —

) =

M,

1
¢y = —ER(I—m)(l—-I') 57

@7

where I = (h,+h)*/12. For simplicity, we have taken x, = x, to derive (27). When h; - oo,
g(1) = 0, which states the fact that a substrate with infinite thickness does not induce
bending curvature. The function g(r) plays the same role as that in Section 2, so that the
solution can be obtained by the same way as that in the Appendix. For a circular inclusion,
the solution is

& () = _1—<icl l —C 1>,

I'nv+1 [N
k . 1 -« 1 1, :
i () = —mlclg—z-mczz—z¢n(0, (28)

where k = k; = k,. Then, the normal and shear stresses on the interface between the film -
and substrate near the inclusion are

3RA 1 60°—-8 x 2
U,\'J‘(p’ 0) = 4/132 7o=1) (rK-f-l p5 r+KE>,
3h 1 3 1-x 1
a)‘(p,O) = ——ﬂao(l_r)<rk+l ;)7+2F+K—1p~2> (29)

The condition, A, A, > R, must be satisfied for the solution to be valid as explained at the
beginning of the section. The normal stress is in compression for a soft inclusion (I" < 1),
and the shear stress is proportional to a coefficient in (29), i.e.,

0,4 (0,0) ~ i 7 0. (30)
Suppose that
hy > 10h > 1000R, | 31)
we have from (30) that
9
0. (p,0) ~ mao. k (32)

The shear stress may be neglected.

5. THREE-DIMENSIONAL PROBLEM

In general, the problem of an inclusion on the interface between the film and substrate
is likely to be a three-dimensional problem. The analytical solution to a three-dimensional
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Fig. 9. Three-dimensional problem.

inclusion problem is difficult and available solutions can be found in Mura (1987). In this
section, by assuming that the elastic properties of the inclusion, film and substrate are the
same, we find an exact solution to the three-dimensional inclusion problem for the case
that the loading is lattice parameter mismatch between the film and substrate. As before,
we assume that the film thickness is much larger than the size of the inclusion.

The three-dimensional problem can be decomposed into two problems. One represents
the lattice parameter mismatch in the x and y directions, and the other represents the
mismatch in the z direction (the x, y, z axes are shown in Fig. 9, and the film thickness
direction is designated as z). As in Section 2, we shall assume that there is no lattice
parameter mismatch in the z direction and the Poisson’s ratio of the film is very small. In
other words, the mismatch in the z direction can be neglected. Following the argument
given in Section 2, the solution to the three-dimensional problem can be obtained by
integrating a point force solution over the inclusion boundary. To do this, we write the
solution of a point force in the following form

k

P .
U{';'(Xsy,z) =m6¢j(9f—xo,y‘ﬂ’o,2—zo), (33)

where indices 7, j and k vary from 1 to 3, designating the x, y and z in turn; P* is a vector
force in the k direction. The function 6%, has the dimension 1/[length}®. Equation (33)
represents the stress field due to a point force in the direction k acting at (x,, yo, Zo). The
stresses induced by an inclusion or a step irregularity can be written as

0o R
0',-_,-()(, s Z) = m[J’(.\'o Yo.p)ES n.\'Gg’.(x — X0, ¥ —Jo: s 30) ds

+f n,67(x—Xg,y— Yo, 2 —2g) dS} (34)
(xg.¥g-Tg)ES

where S is the inclusion boundary that is surrounded by the film, or the vertical part of the
step irregularity, and n = (n,, ,, n.) is the unit outward normal to the inclusion boundary
at (xo, Yo, Zo). For the two normal stresses parallel to the interface between the film and
substrate, g,, and o,,, the residual stress o, has to be added to obtain the total stresses. The
two surface integrals in (34) can not be evaluated analytically for an arbitrary inclusion
shape. They cannot even be evaluated exactly for some simple shapes like a sphere. However,
the surface integrals can be reduced to line integrals to simplify them in many cases. Two
examples will be given below.

The first example is a corner step irregularity, as shown in Fig. 10. The corner step
irregularity occupies the region, x <0, y <0 and 0 < z < a. Note that, if we extend the
above step irregularity region in the y direction and let it occupy x <0, —o0 <y < o and
0 < z < a, it becomes the two-dimensional problem which was solved in Section 2. The
purpose of this example is to examine the effect of a corner on the stress distribution. In
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Fig. 10. A corner step irregularity.

this case, the integrations in (34) can be evaluated analytically. The two shear stresses on

the plane z = 0 are given by
2 2

(x,7,0) Oy l: ay n a
Ox:(X, ), = -
) 8n(l—v) P4y +a X+
y+ /x2+y2+az
+(1-2v)log \
Y+ )7

2 2
Go a’x a
G‘.:(X, ’90 = - +
1:(%,7,0) 87!(1—\’)': P+ /Pyt Y +a

2 2 2
(=2 log Xty X Ay ta ] (35)
X4/ %2 +?

The shear stress o.. in (35) has a logarithmic singularity on the straight line, x = 0 and
¥ <0, as in the two-dimensional case. The corner introduces a stress ¢,-, which is zero in
the two-dimensional case. Far away from the corner, its influence vanishes so that 0,
approaches zero as y — + 0. A plot of ¢,. vs y when x = 0.01a is given in Fig. 11. We
observe that the g,. is negligible for |x| > 5a. On the other hand, ¢,. approaches the two-
dimensional solution given in Section 2 as y —» — oo, and vanishes when y — + o0. The
variation of ¢,. along the y axis when x = 0.01a is also shown in Fig. 11. The two shear
stresses at y = 0, z = 0 are given by

o a’ x'+a?
0.-(x,0,0) = = —“)(_*xz+a2 +(1—-2v)log 2 >,

0,:(x,0,0) = —8 ( 2
U 8-\ AR (x4 )

50 25 00 25 5.0
y/a -

Fig. 11. Shear stresses near a corner step irregularity.
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+(1—2v)log (36)

x+. /X +d°
2x

for x > 0. Comparing ¢,.(x,0,0) with ¢,.(x, — 00,0), we see that there is a simple relation-
ship between them,

Ox: (-X: — 00, 0) = 20.\': (x’ 05 0) (3 7)

This tells us that by traveling from y = — o0 to y = 0, 0,. reduces to half of its value at
y = — 00, and 6,. rises from zero to the one givenin (36). Also, we have another relationship,
62.(x,0,0) +02(x,0,0) < 6%.(x, —0,0) (38)

for x > 0. This says that on the interface between the film and substrate the total shear
stress at (x, 0, 0) is less than the total shear stress at (x, — 00, 0), because the corner relieves
stress concentration.

The second example is a circular plate above the interface of the film and substrate, as
shown in Fig. 9. Both the thickness and radius of the circular plate are a. The axisymmetry
of the problem renders o,. (r,8 and z are used instead of x, y and z) is the only nontrial
shear stress, which on the interface is given by

God

0,:(r,0,0) = — = =

)f (r—acos@)(rcosf—a)

! 1
X { - ‘ }de
(rz—zal‘cos 9-{-202)3/2 (]"—2a]aCOS 6+a2)3,2

0oa " 1
——————(1=2v)} cosf
4n(1—v) ¢ ‘)L [(7‘2 —2arcos 8+2a%)'?

- ! ,ﬂ]d@, 39)
(r* =2arcosf+a?)'"?

after evaluating the integrals in (34) along the z direction. Further derivation shows that
the line integrals in above expression can be written in terms of elliptical integrals. The o,
has a logarithmic singularity at r = a, and a plot of ¢,. vs r is shown in Fig. 12.

We can also give the expressions for other stress components in the above two examples
by evaluating the integrals in (34). The inclusion shape has a strong effect on the
stresses near the inclusion. For the circular plate, ¢,.(1.14,0,0) = 0.1860, and o..

4.0 5.0

r/a
Fig. 12. Shear stress near a circular plate inclusion.
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(a.0,0) = —0.020,, whereas for the two-dimensional circular inclusion in Section 2, the two
stresses on the interface between the film and substrate are 0.230, and —0.10,, respectively.

6. DISLOCATIONS IN THIN FILMS

Over the past few decades, the so-called threading dislocations which form in epitaxial
layers used for semiconductor materials have received attention. Threading dislocations
occur when the thickness of an epitaxial layer reaches a critical value. The critical thickness
has been treated by a number of authors, including Matthews and Blakeslee (1974), People
and Bean (1985) and Freund (1990). But the mechanism responsible for forming such
dislocations has not yet been fully understood. Eaglesham et al. (1989) have discussed the
diamond defect as a source for dislocation nucleation. Dodson (1988) has argued that
the stress concentration around clusters of impurity atoms is a good source to generate
dislocations. The experiments by Perovic er al. (1989) have shown that, for films grown by
molecular beam epitaxy, there are precipitates on the interface between the film and
substrate, and V-shaped threading dislocations are emitted from the heterogeneous particles
if their size exceeds critical value, while particles below the critical size are coherent with
surrounding matrix. Among the two types of heterogeneous precipitates on the interface,
it was found that §-SiC precipitates tend to generate dislocations, whereas SiO, precipitates
are dislocation-free (Hull, 1986) because they are in an amorphous state which eliminates
misfit strains. In this section, we consider these observations in the light of our solutions to
the state of stresses near inclusions in strained layer systems.

We examine the shear stress, which provides the glide force for dislocation motion, on
possible slip planes around the inclusion. Two representatives of the slip planes shown in
Fig. 13 are chosen for the two-dimensional problems (circular inclusion and step irregu-
larity) whose solutions have been obtained in Section 2. The orientation of these slip planes
is chosen here to form the angle, 8 = sin™' (1/\/3), with the interface between the film and
substrate. We neglect the difference in elastic properties among the inclusion, film and
substrate. Figure 14 shows the shear stress for the circular inclusion, where r/a is the
distance from the inclusion ; it has the same trend for the step irregularity. The shear stress
at the inclusion boundary on slip plane #1 for the step irregularity has a logarithmic
singularity, and for the circular inclusion it is nearly twice as large as that far away from
the inclusion, the homogeneous solution. The high shear stress state provides a good
condition to generate dislocations. The shear stress on slip plane #2 is somewhat different
from slip plane #1. Although there is a logarithmic singularity at the inclusion boundary,
the shear stress changes sign at a distance very close to the inclusion, and increases to the
homogeneous solution as the distance increases. The shear stress near the inclusion on any

Slip plane #1
Slip plane #2

Slip plane #1

/ Slip plane #2

Fig. 13. Two possible slip planes which intersect the circular inclusion and the step irregﬁlarity,
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Fig. 14. Shear stress near the circular inclusion on the two slip planes shown in Fig. 13.

slip plane, which is between slip planes # 1 and #2 and is parallel to these two slip planes,
is less than that on slip plane #1.

If the inclusion is admitted as a source for dislocation nucleation in a thin film, the
driving force for the emitted dislocation can be derived as follows. The energy dissipation
associated with the dislocation motion is expressed as

B .
w(S) = J opn;b;ds— J ofin;b;ds, (40)
s s

where S is the glide plane; n; is the outward normal of the left portion of the film divided
by the slip plan; the Burgers vector b; is the displacement of the left side of the ghde plane
minus that of the rlght side of the glide plan. In the expression, the stress field of is due to
the dislocation, and a,j is due to the applied load, namely the lattice parameter mismatch.
Define the driving force G from the time rate of the energy dissipation as

W(S) = Gr, @1)

where v the speed of the emitted dislocation. The driving force is derived in the same way
as that in Freund (1990) for threading dislocation, and is given by

G = —302(A)nb,—ofj(B)n;b;, 42)

where ¢5(4) and ¢7;(B) denote the corresponding stresses at the inclusion boundary and
the position of the emitted dislocation, respectively. Note that since the difference in elastic
properties between the inclusion and the matrix is neglected, there is no image force due to
the mismatch of elastic properties acting on the dislocation. The first term in (42) can be
calculated from the solution of a dislocation in a infinite body, and the second term can be
calculated from the solution obtained in Section 2. We finally obtain

G _ 1 b\ 2(04vy) (r
E‘—4n(1—v)a(a) R °T<> | “3)

where r is the distance between the dislocation and the inclusion boundary, a is the size of
the inclusion, b is the magnitude of the Burgers vector, and T(r/a) is a nondimensional
function obtained from the stresses o;i(B). Given the inclusion size, the magnitude of the
Burgers vector and the misfit strain, the distance from the inclusion at which G =0
(equilibrium point), namely r*, is determined from (43). For r > r*, G > 0; for r < r*,
G < 0. If the dislocation is formed at the distance less than r* from the inclusion, it will be
driven back to the inclusion boundary ; otherwise, it will be emitted. We take the circular
inclusion as an example, and consider slip plane #1. For =04 nm and & = 0.04,
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r*=0458nm if a =100 nm; r* = 0473 nm if a =10 nm: r* =0.673 nmif a =1 nm.
When ¢, is increased to 0.06, r* is 0.305 nm, 0.311 nm and 0.415 nm for the above three
cases, respectively. The larger the misfit strain and the inclusion size, the smaller the critical
distance *. When r* is less than the core cut-off radius, we have the case that the dislocation
formed at the inclusion boundary is emitted spontaneously (see Rice and Thomson (1974)
for dislocation emission from a crack tip). The numerical results here show that dislocation
emission is favored for large misfit strain. For inclusions in shapes other than the two we
have treated here, the driving force may be obtained in the same manner. Zhang and Yang
(1994) have studied the process of dislocation emission from a spherical cavity on the
interface between the film and substrate.

7. CONCLUDING REMARKS

Solutions are presented for several boundary value problems involving various shaped
inclusions located on the interface between a thin film and a substrate. The film and the
substrate have different lattice parameters. The solutions exhibit stress concentrations
around the inclusions. There is a logarithmic stress singularity at the intersection of the
film, substrate and inclusion. Moreover, the shear stress around the inclusion can be nearly
twice as large as the remote field given by the homogeneous solution. High stresses around
inclusions and on the interface between film and substrate could cause dislocation nucleation
and adhesion failure. A theoretical prediction of the misfit strain to cause adhesion failure
is obtained. The driving force for dislocation emission from the inclusion is calculated, and
it is shown that dislocation emission from inclusions is favored for sufficiently large misfit
strain. The results suggest that small inclusions (compared to film thickness) on the interface
between a film and a substrate can be the sources for failure initiation in the layered system.
These failures can be precursors to failures on a larger scale: adhesion failure can lead to
film buckling; and dislocation emission eventually causes threading dislocations as shown
by Zhang and Yang (1994) for a spherical cavity.
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APPENDIX

After the conformal mapping, the two potentials for the matrix, ¢,({) and ¢,({), are analytical outside the
unit circle [} = 1, and admit the forms,

PO =F+ 24
s

¥, (L)—T+b’+ @A

&

The two potentials for the inclusion, ¢,({) and ¥,({), are not analytic inside unit circle, and are expressed by
Laurent series,

$2(0) = 02 (D) + 62200, ¥2() = Y21 (D +V¥22(D), - (A2)

where

. i 1
() =coterl{+elP+ 0, ¢ = C—lZ+C-2T2+ BN

4
e v - 1 ]
Ua() =do+d {+d-0° 40, Y@ =4d_, 7 +d-272 +oe (A.3)
¢
The following relations hold because of the mapping,
m .
¢ <?>—¢21 (0) = ¢22(0.
m
v (—z—)—w“ © = Y= ©. A4

Taking the integrations, (1/2ni) L.l/(r—{) dz, where || > 1 and y denotes the unit circle |{| = 1, on (6), we
obtain

. . Camo o (1 T+ 1 o~
"¢)(é)+¢::(s)+c —m§3)¢u<i>+ TR 1 05 (/m)

[

B

14’ 1 -
+ %” Gh1 (= /m) + 6y (Z) ¥u(0) =410,

f

g |

5 0+ 302 5 7:—1;)435;(
2{(Y=—m{*

)

11 ‘
+m? ,(\/—) 14+m? 5*1( \/—)

2/1 2m m

I v

g—— ¢+
Jm f
N L om0 (A
Tlalg [t n V@ =0 A9

where

gl(C)—ﬂfﬂ):d.. v (A.6)

The same integrations on the conjugates of the two equations in (6) give

L] 2
HAme) o oy — w<s)+¢z,(,) Fa(0)+ ”"’[ A e ¢,,<,/_m)]

-m

Mﬁgsnmwnm 9:(0),
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1 {Q+md?)

IO

¢1(K)+ 'I/I(L)+ ¢ 1(%)‘%‘521(0)

I 14+m? 1 {d+md) 1 "
Ton 2 [{ \/—¢7|(\/';)+ \/—4’21(\ -—m)] 2“2”?:7%2(()—2#2‘//::(&)—0, (A7)

where

00 = 55 Oy A9)

The following equation is obtained by (A.5.1) - (A.5.2) x 2u,/k;,

2Ky = Ky I4+n? 1 f ! .
_#;lil\:[]l —¢2:(C)+7_‘T¢21(\/’")+ ] 21/ —m)
2K+ {—— C+T
m

Jm
———’m(L ) @2 (M) + Y22 (ml) = LI,

9,(0). (A9
—— K‘_H‘]g]() (A9)

Similarly, (A.7.1) +(A.7.2) x 2y, gives

1Ka 1
B i)+ S gt (U + — ()
-7 “\/E
+ ﬁl—f’"—qsu(mo +Yanml) =

2(m). (A.10
#lg.( . (A10)

1‘5

In obtaining (A.9) and (A.10), we have made use of (A.4). Also, we have replaced the variable { by m{ in (A.10).
By (A.9)~ (A 10), an ordinary differential equation for ¢..({) is obtained,

Wikytpy o0 K~k o [ { {
Ll S Wi L Y L 1—m2— 2 0. Al
e @+ S g () a-mi L o (H)- 400 a1
where
o ok, —( ¢ H2 {
D=-—2l g+ 2=, A12
9@ #2K1+#|g](m:) #2_#1g (’77> ( )

Using (7), we evaluate the integrals in (A.6) and (A.8) to obtain

—xius C tim? 2 _ .4 +n?
a0 = - Ky fa __?(__2_7‘1)“11 +g m log* m)
Ky s +pty 27 Y m (—m?
2 C l. 2""‘ 2 C
PR (S NS S PR i (A.13)
Ha— ity 27 ¢ m{ (—m
Generally, the solution for ¢,,({) in (A.11) is expressed in terms of series. We write
o =3 f,,v ,
n=1
. - 1
$22(0) = 3 a,—, (A.14)
n=1 g"

where £, (n=1,2,...) are the known coefficients from the series expansion of (A.13). We obtain ¢a({) by
substituting (A. 14) into (A.11) and comparing the coefficients of both sides.
By (A.5.1) +(A.5.2) x 2p,, the potential ¢,({) is obtained as

. i o M (1+k,) .
W)= — ——m ——— P~ . 1
6, () oK, E#]gl(S)+ ok, 22(0) (A.15)

Similarly, (A.7.1) +(A.7.2) x 2, gives
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Evaluating the integrals in (A.15) and (A.16). we have the final result,

]+l\'2 2C & 2 |
ey a,m B

]
[ Tr +1 m = oo

1 C in (-1 {+1 l+x, C  (Pym+P
0 =t Ol gy I O L], dw £ (Pmt P
Ik, +1 2ni ¢ ¢ (=1} Tri+12p o pm?+l—m

G C[_, i, fe1 4]
‘““‘r—lzm[ gt e 1]

(4m® . 1+x. C  (Pym+P,) 1 14+k,2C&
- $O+71 7 2 2oy 1Tr za —, (AI7)
P—m Py +Pymt+1—nm?t -T = G
where I' = po/u; and
- 201 =m*)nm® = + (P, + P.m*") (Ponr—Py) 1 ’
(Py + Pam*): —4n* (1 —m?) m* 2 4n*—1
I'+x, ‘ Ik, —k,
P=v1 B="TT1

'k r
d (A.18)

P=r 1 o1

The two potentials for the inclusion, ¢,({) and ¥,({), can also be obtained.
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Abstract—A semi-infinite crack in a strip of an isotropic, functionally graded material under edge
loading and in-plane deformation conditions is analyzed. Mixed mode stress intensity factors are
analytically solved for up to a numerically determined parameter. The effects of material gradients
on the mode I and mode II stress intensity factors and the phase angle used to measure mode mixity
are determined. The solution is extended to the case where the strip is made of an orthotropic,
functionally graded material. These results are applied to solve a four-point bending specimen
configuration that may be used to test the fracture behavior of functionally graded materials. The
nature of the crack tip fields and possible fracture criterion for functionally graded materials are
discussed. Copyright © 1996 Elsevier Science Ltd

I. INTRODUCTION

Functionally graded materials (FGMs) to be used as, inter alia, superheat-resistive materials
have promised attractive applications in furnace liners, space structures, and fusion reactors.
FGM:s consist of two distinct material phases, such as ceramic and metal alloy phases, and
are the mixture of them such that the composition of each changes continuously along one
direction. The change in microstructure induces chemical, material, and microstructural
gradients, and makes functionally graded materials different in behavior from homogeneous
materials and traditional composite materials (Yamanouchi ez al., 1990 ; Holt ez al., 1993).
These materials are tailorable in their properties via the design of the gradients in chemistry
and microstructure that is possible within them.

Experiments have shown that cracks occur in functionally graded materials (see above
references) although the absence of sharp interfaces does alleviate problems with interface
fracture. For cracks in this type of material, stress intensity factors are affected by the
material gradients. Moreover, the fracture modes of the cracks in FGMs are inherently
mixed when they are not parallel to the direction of material property variation, i.e., there
are typically both normal and shear tractions ahead of the crack tips because of the non-
symmetry in the material properties. To characterize the material, fracture toughness data
is required. To obtain the fracture toughness data. stress intensity factors for specimens
subjected to variable external loads are needed. Most previous works on FGM crack
configurations have concentrated on finite crack problems, e.g., Delale and Erdogan (1983,
1988) and Noda and Jin (1993) have analyzed a finite crack in a plate subjected to
mechanical and thermal loads. A semi-infinite crack in an interlayer between two dissimilar
materials was considered by Yang and Shih (1994), and they obtained an approximate
solution from a known bimaterial solution. We consider herein a semi-infinite crack in a strip
of an isotropic, functionally graded material under edge loading and in-plane deformation
conditions. Stress intensity factors for the crack tip are obtained. The solution is analytical
up to a parameter which is obtained numerically. The solution is extended to the case where
the strip is made of an orthotropic, functionally graded material. The results are applied to
analyze a four-point bending specimen configuration that may be used to test the fracture
behavior of functionally graded materials. The mode I11 stress intensity factor in the cracked
plate subjected to anti-plane deformation is obtained. The nature of the crack tip fields and
possible fracture criterion for functionally graded materials are discussed.
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The main emphasis here is to analyze fracture behavior in materials that possess
continuously graded microstructures. On the other hand, the physical picture developed
for the cracked microstructure actually provides a more realistic model for cracks along
interfaces, in general, at least for those that have any but atomic-scale width.

2. FIELD EQUATIONS FOR ISOTROPIC MEDIA

In this study, we take the elastic properties to be of following exponential forms

E'(y) = Eoe”,
V() = vo(l+ey)e™, )]

where y and ¢ are material constants representing the material gradients ; £, and v, are the
values of these elastic properties at y = 0. For plane stress problems, E'(y) = E(y) and
v'(y) = v(y), where E(y) and v(¥) are Young’'s modulus and Poisson’s ratio, respectively ;
for plane strain problems, E'(y) = E(3)/[1=v(3)] and v'(3) = v(¥)/[1 —v(3)]. The par-
ameters y and ¢ have a dimension [length]~'. These forms for the material properties have
been previously used by Delale and Erdogan (1988) and Noda and Jin (1993) ; they provide,
on the one hand, analytical flexibility and yet lead to somewhat simple forms for the field
equations. The shear modulus, u(y), relates to Young’s modulus and Poisson’s ratio by

E'(y)

uy) = vl 2

Using (1) and (2), the stress function ®(x,y) defined in the same way as that for
homogeneous materials, i.e., stresses are obtained from the second derivatives of the stress
function, satisfies the following equation

& Faal 1) &'o Pl ol TRl , 0?0
4 + a7 oA 2+ ~ —2"':—<“ 2 7>+‘}“— A2 =0' (3)
ox ext eyt oyt Cr\ex?  oy? ¥

For a traction problem, the solution satisfies (3) and boundary conditions. The material
constant y enters the stress field of the traction problem, whereas the other material
parameters E,, v, and ¢ do not. In (3), the fourth-order differential terms do not involve 7,
and constitute the biharmonic equation, which is the equation for homogeneous materials.

By dimensional analysis, the stress field has the following generic form '

L x vy
05(x.y) = TG?}(;‘/L;,/—I,'/;), )

where i, j =1, 2; T is a representative stress magnitude; / is a characteristic length in the
problem; & is the group of lengths which represents the geometry of the problem. This
differs from the case of a homogeneous material in which material properties do not enter
the stress field of a traction problem, and also differs from the case of a bimaterial in which
Dundurs’ parameters (Dundurs, 1969) measuring the material mismatch enter the stress
field of a traction problem.’

The parameters yh in the solution is dependent on the thickness of a. functionally
graded material, L, the Young's moduli at the upper and the lower boundaries of the
material, £, and E}, and the characteristic length, 4. From (1),
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vh=-In—. (5)

It is seen that 74 is proportional to 4/L, and increases logarithmically with the ratio of the
two Young's moduli. For example, if h/L = 1, vh = 0.35 for E,/E; = 0.5, and yh = 0.97
for E,/E; = 7. The choice of h is arbitrary. If 4, and , denote two choices for the charac-
teristic length, the corresponding stresses obtained satisfy the relation

F x ¥ ) L x y
*l ny % \
? ”(’h”ll “In /11) 7 'f("’ hyhy ha> ©

3. CRACK TIP FIELDS

A brief review of the crack tip fields in functionally graded materials is given in this
section. Consider a crack in a strip of a functionally graded material, as illustrated in Fig.
1. Stresses near the crack tip have a square-root singularity, and singular terms of the
stresses (Jin and Noda, 1994) are of the form

Kl Klll

K,
/ 2nr N/ 2nr N 2nr

where i, j =1, 2; r and 6 are the polar coordinates shown in Fig. 1. The dimensionless
angular functions &},(6), 61} (6) and ¢};'(6) are the same as those for homogeneous materials.
This can be easily proved by expanding the stress function as X,_,#"*?®,(6,y), and sub-
stituting the series into (3). The resulting equation for ®y(6, y) and the eigen-value problem
used to determine p do not involve y and are the same as those for homogeneous materials.
In fact, for any form of material properties and any orientation of the crack, the highest
order differential terms in the equation which the stress function satisfies are the three
fourth-order differential terms which constitute the biharmonic equation, and the terms in
the equation involving material gradients are the lower order differential terms. These lead
to that the equations for ®(0, 7) and p are the same as those for homogeneous materials.
The stress intensity factors K, K;; and K, are functions of the material gradients, external
load, and geometry. Material gradients do not affect the order of the singularity and the
angular functions, but do affect the stress intensity factors. As a result the near-tip stresses
have the same form as that for a homogeneous material. For an interface crack, stresses
have an oscillatory singularity, and both the stress intensity factors and angular functions
involve Dundurs’ parameters, i.e.,

a;,(0) +

e, ©

A U

;P'i T ik

M*=P (3, +H- §, )+M

Fig. 1. A semi-infinite crack in a strip of a functionally graded material subjected to edge loading.
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= R 510,00+ 25D (6.4 L o), ©

2nr 2ar < 2nr

where K = K+ K}, is complex stress intensity factor, and

Gij

€)

In (9), B is one of the two Dundurs’ parameters. The Dundurs’ parameters, o and f, are
defined as

o= (Ko +1) = py(x, +1)
By(Ra+ 1)+ pp ey + 1)

- py (K= 1) = ps(xy —1)
(o + D)+ (x, +1)

(10)

where y, and y, are the shear moduli of the two bulk materials ; k, = 3 —4v, for plane strain
and k; =(3—v;)/1+v,) for plane stress (i = 1, 2), with v, and v, being the Poisson’s ratios
of the two bulk materials. It is noted that, by considering material gradients near the tip of
an interface crack, the oscillatory behavior is removed, and the angular functions become
independent of material properties. In this sense, the solutions presented here represent a
more physically acceptable description of interface crack tip fields, at least for interfaces
that have a finite width. ‘
The strains obtained from the stresses given in (7) are

& = Sx(0) s+ [Sijus (V) = Sy (0)] oy, (11

where S;;,(y) is the compliance tensor, and S,;,(0) is the tensor at the crack tip. The second
term in the above equation is in the order of * 2. So the singular strain field is

& = Sijkl(o)okl- (12)
From (12), one is able to show that the near-tip displacement field is the same as that for

the homogeneous materials.
From (7), the traction at the distance r ahead of the crack tip is

K
O+ 10y = (13)

< 2nr

for an in-plane problem. For a mode 111 problem, the traction is, likewise,

6y = —, (14)

Having the near tip stress and displacement fields, the energy release rate of the crack tip
is obtained as

Ki | Ki K

g =
E0) T EO T 20

(15)

where E'(0) and p(0) are the Young’s modulus and the shear modulus at the crack tip,
respectively. It can be seen that the above egns. (7) and (12)—(15), are independent of the
forms of the material properties and the orientation of the crack, and they all have the
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same forms as those for homogeneous materials. The path-independence of the J integral
(Rice, 1968) holds if the crack is perpendicular to the direction along which material
properties change ; this is implied in Rice’s original proof for homogeneous materials. Using
the near tip fields obtained above, it can be shown that the J integral is equal to the energy
release rate for the crack perpendicular to the direction along which material properties
change.

The complex stress intensity K = K;+iK;, for FGMs has the following generic form

K = |K|e, (16)
where
K
Y =tan”! 7%—‘ a7

is the phase angle of the complex stress intensity factor. The phase angle measures mode
mixity, i.e., the proportion of the shear traction to the normal traction ahead of the crack
tip, since

Y =tan™’ (ax)) . (18)
GJ'J' 6=0.r-0

As a result of the regular singularity, this, again, is consistent with the phase angle defined
for cracks in homogeneous materials. In the case of interface cracks, a material length is
needed to define the phase angle.

As a starting point, we postulate that the crack starts to propagate when the energy
release rate reaches a critical value T, the roughness of the FGM. The toughness is likely
dependent on the material gradients, the position of the crack tip, namely 4/H for the
configuration shown in Fig. 1, and the mode mixity y. It is also possibly dependent on the
propagation direction ¢(—n < ¢ < m) which is the angle between the propagation direction
and the x axis in Fig. 1. The energy release rate is a function of the external load, elastic
constants, the angle ¢ and the mode mixity . Now, the fracture criterion is stated as

a

é

4=T, —@-TI)=0. 19
35D (19)

The criterion also determines the propagation direction (kink angle). If toughness in the

direction ¢ # 0 is relatively larger than that in the direction ¢ = 0. the crack would

propagate along its original orientation. In this case. the fracture criterion is

h
G = I'(E,c,b). (20)

where T'(h/H, V) is the toughness along the direction ¢ = 0. The toughness of FGMs
may be measured by experiments or obtained from micromechanics by considering their
microstructures.

4. THE IN-PLANE PROBLEM

The in-plane crack problem is illustrated in Fig. 1, where a semi-infinite crack in a
strip occupies the negative x axis and the crack tip is at the origin. The material properties
change along the y axis. The geometry is specified by A, the distance between the crack face
and the upper boundary, and H, the distance between the crack face and the lower boundary.
The body extends infinitely in both the positive and negative x axes, and is loaded at the




6 P. Guand R. J. Asaro

left side far behind the crack tip. The deformation far behind the crack tip consists of
bending and compression in the upper arm, and bending and tension in the lower arm. The
external load results in two forces which are of the same magnitude P but which act in
opposite directions, and two bending moments, M and M*. The compressive and tensile
forces act at the neutral axes of the upper and lower arms, respectively. One of the
two moments, M, is given independently, and the other is M* = M+ P(8,+ H—6,) by
equilibrium, where 9, is the distance between the neutral axis of the upper arm and the
crack face and 4, is the distance between the neutral axis of the lower arm and the lower
boundary. According to the small-strain compatibility equations. the only non-zero strain,
&xx 10 the two arms far behind the crack tip varies linearly along the y axis.

We consider bending deformation in the two arms far behind the crack tip resulting
from the two bending moments. The strain ¢,, can be expressed as

Exx = —K(_V'—é]) (21)

in the upper arm, where  is the curvature of the upper arm. The moment M relates to the
curvature by '

M = xkE,],. 22)

In (22), I, is the moment of inertia and is given by

h /13
I, = J e¥(y—4,)’dy = 1-2‘0(1 (yh), (23)
0
where
2 2 2
oy (vh) = lzlil (1 - ﬁ) eth (1 - ﬁ) e+ _2__6':‘/7__ _1__ (é) - __2_ ﬁ — 2 :’
vh h (h)? h (7h)? vh\ h Gh? b (h)?
24

When y =0, o, = 1 so that I, = #%/12, a standard result for homogeneous materials. The
only non-zero stress in the arm is the normal stress in the cross section,

M@= 4y) o
a.\'.\' 11 .

25)

By the equilibrium requirement f’{, 0. dy = 0, the position of the neutral axis is obtained as

o) yhe'—e"+1

26)
h vh(e” —1) 20
Similarly, results for the lower arm are
_M*(y+H-4:) oo
xx T ]2 s
H . H3
I‘) = 7(h—H) '—5-: 2 ;o= 2.
T L e (r—29d.)*dy 13 %2
9, yHe—et+1]
e @7

H™ LHE -1

where
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% (yH) = o, (G H) e ™. - (28)

We next consider axial deformation in the two arms resulting from the two forces. Since
the compressive force acts on the neutral axis of the upper arm, the deformation caused by
it is uniform compression. The stress distribution in the cross section to produce the uniform
compression is

Py
et —1

e, (29)

Oxx =

Similarly, the stress distribution in the cross section of the lower arm due to the tensile
force is

ew. - (30)

It is seen that in the cross sections the strains vary linearly with y, whereas the stresses vary
exponentially with y. Expressions for the stresses and strains for the case that material
properties change linearly along the y axis have been derived by Freund (1993) and
Giannakopoulos er al. (1994) in studying thermal and mechanical responses in a com-
positionally graded layer sandwiched between two dissimilar materials without cracks,
where a linear stress distribution along the thickness of the compositionally graded layer is
obtained from the linear variation of material properties. Giannakopoulos ef al. (1994)
have also investigated plastic deformation in the compositionally graded layer. More
recently Maewal er al. (1995) have developed a more general framework for analyzing
thermally induced stresses in generally orthotropic FGMs with arbitrary gradients.
Having the remote field, the complex stress intensity factor K is obtained by the
application of the J integral, dimension analysis and linearity consideration. The procedure
is similar to that in Suo and Hutchinson (1990) for an interface crack. The complex stress
" intensity factor is obtained as

l A . I .
= +1 = — Z pP—_ijele i
K Kl IK“ \/5<\/:1P 1€ ’ PE M)C . (31)

A = v} ! ! +E £6_1+1 55_2.211_
=\ T e ) T \H R H) B
12, 20y
T, ay \H/’

. 12 [h$, 52><h>2
Sing = ——— (= 2 1= 2 (2 ). (32

In (31). w = w(yh, h/H) is to be determined, and is in the range 0 < w < n/2. The complex
stress intensity factor is fully obtained apart from the dimensionless real scalar w(yh, /i/H).
The expression for K has a similar form as that for an interface crack. In the interface crack
case, Dundurs’ parameters enter the solution as variables of 4, /, ¢ and w, whereas the
material constant y enters the solution as a variable of those parameters in our case.

To determine w(yh, b/ H), we solve the full boundary value problem for given 4 and
h/H,using the integral equation method. Integral equations for this problem can be obtained
by Fourier transforms. The numerical procedure is to distribute dislocation densities simu-
lating opening and sliding displacements of the crack in terms of Chebyshev polynomials,

where
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Table 1. w(;h.h H) (in degrees)
+h

hiH 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 20 2.2 24
00 538 54.9 56.0 56.9 57.5 58.0 58.3 58.5 58.6 58.6 58.5 58.4
0.1 53.5 54.8 56.0 56.9 57.5 58.0 58.3 58.5 58.6 58.6 58.5 58.4
0.5 516 524 53.2 54.0 54.7 55.3 559 56.4 56.8 57.1 574 57.5
1.0 496 50.1 50.7 51.2 51.7 52.2 52.7 33.1 53.5 53.8 54.1 54.4
20 470 47.3 47.6 47.9 48.2 48.5 48.8 49.1 494 496 49.9 50.2
10 40.8 40.9 40.9 41.0 41.1 41.2 41.2 41.3 414 415 41.6 41.7
100 39.0 39.0 39.0 39.1 39.1 39.1 39.1 39.1 39.1 39.1 39.1 39.1

w (In degrees)

2.4

h/H=10
40 F -
3%.0 0.4 0.8 1.2 1.6 2.0
vh
Fig. 2. Numerical results for w(yh, h/H).
A Po
_J___ 1n
H
A
I

l._.|

Fig. 3. A four-point bending specimen.

and to adjust the coefficients of these polynomials to satisfy the integral equations which
are expressions of equilibrium (see Thouless er a/., 1987). Table 1 gives numerical results
for w when 0 < y2 < 2.4 and h/H =0, 0.1, 0.5, 1, 2, 10 and 100, which are also shown in
Fig. 2. For most cases, the w increases as y/ increases, and the increase is larger for smaller

h{H.For h/H = 100, the numerical solution shows little change of &> when yh varies between

0 and 2.4.

When M =0, the phase angle ¢ = w; when P =0 (double-cantilever beam),

Y = w+¢—90°. A four-point bending specimen configuration shown in Fig. 3 can be

reduced to the present problem by cutting it from the middle. By a superposition scheme
(Suo and Hutchinson, 1990) and above deformation analysis, the force P and the moment

M are




where
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P [ h
- | G+ H=85) e dy,
0

Pl h
M=7 J(.1-’+H—53)(J’-“51)C""'dy, (33)

R

H+h
I= J (y—63)2 P dy. (34)

0

In (33) and (34), & is the neutral axis of the right side of the plate, and is given by replacing
h by H+h in (26). Figure 4 shows that the phase angle and the magnitude of the complex
stress intensity factor for the four-point bending specimen. The phase angle varies as 7h
varies between 0 and 2.4. The variation is larger for smaller #/H, and is quite small when
h/H increases to 10. The magnitude of the complex stress intensity factor increases as yh
increases, and significantly increases as //H increases. Figure 5 shows the phase angle and
the magnitude of the complex stress intensity of the double-cantilever beam. In this figure,

v (in degrees)

[KIW*?/(P,))

55 T T g T T

S50 F h/H=0.1 1

] e E @)
h/H=1
hH=2
a0 /H=10 -
s
1 1 1 ) 1
%0 0.4 0.8 1.2 16 2.0 2.4
+h

()]

1.6 2.0

%.0 ’ 0:4 018 1?2

+h

24

Fig. 4. The phase angle Y and the magnitude of the complex stress intensity factor |K| for four-

point bending specimen.
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50 1 R ] T L} T
a0F h/H=10
)
Q
g
@ a
g (a)
£
T 10
> h/H=0.1
20 3
-30 3
- i 1 1 1 L
%0 0.3 0.8 1.2 1.6 2.0 2.4
5 ¥ L} ] Ll T
= of ]
g L hH=0.5
< (b)
X 2f ;
h/H=0.1
1f A
%o 0.4 0.8 1.2 1.6 2.0 2.4
vh

Fig. 5. The phase angle { and the magnitude of the complex stress intensity factor |K] for double-
cantilever beam.

the phase angle increases as yh or h/H increases. Similar to Fig. 5(a), the variation of the
phase angle for yi between 0 and 2.4 is insignificant when h/H increases to 10.

The ratio of the Young’s moduli of the two material phases in a FGM, E, and Ej is
usually less than 10. From (5),

vh = h;—:_é-;_;%) <Inl0 <24, ’ 35)
This tells us that the numerical results for 74 between 0 and 2.4 given here provide a
complete solution for the semi-infinite crack in FGMs, shown in Fig. 1.

To obtain a quantitative feel for the behavior of the solution, consider the double-
cantilever beam (i.e., P =0) with E,/E;=7. If h/H = 1, from (35), yh ~ 1. The stress
intensity factors are Kyi*?/M = 3.55 and K,h**/M = 1.02, whereas for a homogeneous
material with h/H = 1, they are 3.46 and 0, respectively. If i/H = 0.1, 7h ~ 0.18. The stress
intensity factors are Kyi**/M = 1.92 and K,;h**/M = —1.34, whereas for a homogeneous
material with #/H = 0.1, they are 1.96 and —1.47, respectively. If h/H = 10, vh~ 1.8
The stress intensity factors are Kh**/M = 63.23 and K,/**/M = 50.71, whereas for a
homogeneous material with i/H = 10, they are 62.09 and 46.52, respectively. This shows
that the change of K, is larger than that of K, due to the change of material gradients. Also,
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the stress intensity factors at E,/E; = 7 are larger than those of a homogeneous material
except the case for h/H = 0.1.

For the four-point bending configuration with E;/E; =7 and h/H =1, the stress
intensity factors are Ki*?/(Pyl) = 2.21 and Ky’ 2(Pyl) = 2.07; they are 1.73 and 1.50,
respectively, for a homogeneous material. If h/H = 0.1, the stress intensity factors are
K 1¥2/(Pyl) = 0.05 and Kyyh**/(Pyl) = 0.06 ; they are 0.03 and 0.03, respectively, for a homo-
geneous material. If #/H = 10, the stress intensity factors are K2 [(Pol) = 62.79 and
Kuh¥?/(Pl) = 51.21; they are 61.30 and 47.45, respectively, for a homogeneous material.
Similar to the double-cantilever beam, the change of K|, is larger than that of X, due to the
change of material gradients; and the stress intensity factors at E,/E; = 7 are larger than
those of a homogeneous material.

5. SOLUTION FOR ORTHOTROPIC, FUNCTIONALLY GRADED MATERIALS

In this section, we consider the strip in Fig. 1 is made of an orthotropic, functionally
graded material. The problem is solved by orthotropy rescaling. In general, there are three
material gradients associated with two Young’s moduli and one shear modulus. The moduli
can be written in following forms

E\(y) = Eyo €™,
Ei(y) = Eyp €™,

12 (p) = p(y) e, (36)

where 7,, 7, and 7y, are material constants; Ey, and Ey are E(y) and E5(y) at y =0,
respectively; u;5(y) is the shear modulus in the x-y plane. For plane stress problems, E)
(») = E\(¥) and E5(3) = E,(y), with Ey(y) and E5(2) being Young’s moduli in the directions
parallel to the x axis and the y axis, respectively. For plane strain problems, E
() = E(3)/[1 =vis(0)va()] and E5(3) = Ex(3)/[1 = va3(3)vs2(3)], with vi3(y) and v5,(3),
and v,3(3) and vs,(3) being four Poisson’s ratios in the x—z and y-z planes, respectively.
For isotropic materials, the elastic properties in (36) reduce to those in (1) and (2). The
variation of Poisson’s ratios can also be written in the exponential form similar to that of
the Poisson’s ratio in (1) for isotropic materials.
We consider a special set of elastic properties, which is given by

= T2=0=7
vhy (h) = vaye(l+er)e™,

vi2(3) = vi2o(1 +23) €7,
E5(y)

20 =" (37)
20/74 75 ()]
whereas v,;0 and vy are v5,(3) and v,(y) at y = 0, respectively; ¢ is a constant ; and
. Ex
Jo=—= : 38
Eo' ©8)

For plane stress problems, v3,(3) = vui(») and v)2(3) = vi5(3), with v,(¥) and v;2()
being two Poisson’s ratios in the x-y plane. For plane strain  problems,
vi2(3) = V120 + () v (][] —vi:(Dva (M) and Va1 (3) = [vu(3) +v0)va (M)
[1 = v43(3)v12(3)]. These forms for the material properties of orthotropic, functionally graded
materials provide analytical flexibility, and lead to somewhat simple forms for the field
equations. :
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Using this set of elastic properties, the stress function ®(x, y) satisfies the following
equation

r7al) Al o' ) &' 3o
2./7 ~yfim— =2 1 2 0, (39)
oxt ox?dy? &' Cx* ¢y’ ¢y’
Making a variable change
x =714 (40)

eqn (39) becomes

+ — —_—
e&t eyt oyt yéy

+92—=0 )

&P 5 M0 ) 6(624) 62d>> 2*®
y?

0¢2  oy?

in the ¢-y plane. The above equation shows the orthotropy rescaling (Suo et al., 1991)
works for nonhomogeneous materials which obey (36) and (37), since it is the same as eqn
(3) for isotropic materials. Stresses in terms of ®(¢, y) are

22 A2 A2
=2 g 0 e, 80 (42)
xx a2 - - ag2 ? (d Xy aéa
'y 6¢ c 0y
Stress intensity factors are expressed as
=38 p 1 575 0P
AT K = E_'l(1)1?1=0 2né Py
PR ‘
solsp o
LTV KG = €__.1(13}1:0 2né —~—aé P 43)

According to above analysis and the solution for isotropic materials in Section 4, the
stress factors to the orthotropic problem are given by

v LA, T .
/A 3"8K1+I/. ]8K11=—ﬁ<\/%f)—l€'p h—3M>6 . (44)

where A4, I, ¢ and w are the same as those in the solution for isotropic materials in Section 4.

From above expression, K, and K;, are those of the isotropic solution modified by
multipliers /** and 7'%, respectively. The phase angle of the orthotropic problem, ¥,
relates to that of the corresponding isotropic problem, y;,, by

anWom) = 47" * tan(y,). ' (45)

The effects of 2 on the crack-tip field depend on its value. When / > 1, the stress intensity
factors are larger than those of the isotropic case, and the phase angle is smaller than that
of the isotropic case ; and when /. < 1, the stress intensity factors are smaller than those of
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70 T ¥ L) ¥ T
h/H=1 .
ol A=0.1
)
o 50+ b
b A= (a)
v b——
£ 4F ]
'
=
30 A=10 -
2 1 " 1 " 1 - 1 1
%.0 0.4 08 - 1.2 1.6 2.0 2.4
+h
=
[-)
o’
N
= (b)
X
ik J
%.0 0.4 0.8 1.2 1.6 2.0 2.4

+h

Fig. 6. The effects of 7 on the phase angle and the magnitude of the complex stress intensity factor
|K| for four-point bending specimen.

the isotropic case, and the phase angle is larger than that of the isotropic case. For the four-
point bending specimen configuration, these effects of 7 are shown in Fig. 6.

6. THE ANTI-PLANE PROBLEM

The cracked strip shown in Fig. 1 subjected to anti-plane deformation (mode III
problem) is considered in this section. For the mode III problem, we take the shear modulus
in the following form

u(y) = po e, : - (46)

where y, is the shear modulus at y = 0 and y represents the material gradient. The strip is
loaded at the left side far behind the crack tip, and the traction is

Oy = — 0, €7 @47

for x - — oo and y > 0, and
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Oy = 0> e” - (48)

for x = — o0 and y < 0. The traction produces two uniform strains,

2!
8o = — T 49
e 2#0 ( )
for x > — o0 and y > 0, and
09
&y =7 50
e=gt (50)
for x » — oo and y < 0. From the equilibrium requirement,
h (]
P= J o,.dy = J' o4y, (51)
0 -H
and (47) and (48), we have
Py
o, = T (52)
Py
7= 1—e™ '

Having the remote field, the stress intensity factor X, is readily obtained from the J
integral as

Ky = P\/ i <1+ e."h_l) (53)
n= e\ i)

The normalized stress intensity factor Km\/l_z/P, which is equal to the second square root
in above equation, is only related to the dimensionless group, yh and yH. It increases as y
increases. When y = 0, the stress intensity factor recovers the solution for a homogeneous
material; when y = o0 or H = 0, it is unbounded. A plot of the stress intensity factor is
shown in Fig. 7.

4 v ¥ k) L4 L4 L
h/H=10

3 J
& h/H=1
g [ h/H=0.5 = _ J
3 2 / / h/H=2
X / / ]

14
1F h/H=0.1 1
%o 0.4 0.8 1.2 1.6 2.0 2.4
+h

Fig. 7. The stress intensity factor Ky for the anti-plane problem.
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2-5 L) 1] T L L] ) T ¥
h/H=1
20 L
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= 15F
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Fig. 8. A comparison of stress intensity factors obtained from different forms of the shear modulus.

When the shear modulus varies linearly along the y axis, it is written as

=W wH+Wh

#O) = h+Hy+ Wi H (54)

where u, and y, are shear moduli at the upper and lower boundaries of the strip, respectively.
The stress intensity factor for the linear variation of the shear modulus is

2(r+n) ( r11+2r+11) (55)

K
m= \//_,\/)}1+2r+11 nr+2n+1

where r = p,/u;and n = h/H. A comparison of the stress intensity factor obtained from the
linear variation of the shear modulus with that from the exponential variation of the shear
modulus is shown in Fig. 8 for #/H = 1. The results show that the difference between them
is quite small, less than 5% in the range considered. When the crack moves to the ceramic
side, the difference between the two solutions becomes smaller, and when it moves to the
metal side the difference becomes larger. The difference is less than 0.4% for h/H = 0.1;
and is less than 8% for #/H = 10.

7. DISCUSSION

A complete solution to a semi-infinite crack in a strip of an isotropic, functionally
graded material is obtained. It is shown that material gradients have strong effects on the
stress intensity factors and the phase angle. For the double-cantilever beam, the mode I
stress intensity factor is 3.55 and the mode II stress intensity factor is 1.02, when the crack
is at the middle of the strip (i/H = 1) and the ratio of the Young’s modulus at the upper
boundary to that at the lower boundary is 7; for homogeneous material with the same
geometry, they are 3.46 and 0, respectively. For the four-point bending specimen con-
figuration, the mode I stress intensity factor is 2.21 and the mode II stress intensity factor
1s 2.07, when the crack is at the middle of the beam (4/H = 1) and the ratio of the Young’s
modulus at the upper boundary to that at the lower boundary is 7; for a homogeneous
material with the same geometry, the two stress intensity factors are 1.73 and 1.50, respec-
tively. These results show that the increase of the mode II stress intensity factor due to the
increase of the material gradients is significant, in other words, the mode 11 stress intensity
factor plays an important role in the fracture of FGMs.

The solution for isotropic materials is extended to orthotropic, functionally graded
materials by orthotropy rescaling. The effects of the orthotropy on stress intensity factors
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and the phase angle are explicitly shown in the orthotropic solution. In the orthotropic
solution, since we assume a special set of material properties, the orthotropy is measured
by one parameter, the ratio of the Young's modulus in the direction of material property
variation to that in the direction perpendicular to the above property variation direction.
For general orthotropic, functionally graded materials, there are other parameters in
addition to the ratio for characterizing the orthotropy. However, it seems that the ratio is
the most important parameter to be considered.

The crack propagation is the competition between the driving force, the energy release
rate, and the toughness of the material, i.e.. a crack starts to extend when the former one
exceeds the latter one. The FGMs are expected to have considerably larger toughness than
corresponding bimaterials because there are no large weak planes, such as interfaces, e.g, a
layered structure with compositionally graded interlayers is expected to have a larger
toughness than that obtained by bonding these layers with sharp interfaces. On the other
hand, the energy release rate of a FGM is at the same level as that of the corresponding
bimaterial. Consider a bimaterial which has the same configuration as the FGM shown in
Fig. 1; above the x axis is material #1 with Young’s modulus E;, and below the x axis is
material #2 with Young’s modulus E;. Figure 9 shows the comparison of the energy release
rate of the FGM with that of the bimaterial for the double-cantilever beam when
0 < h/H < 2.Inthecalculation, E,/E; = 7, and the Poisson’s ratios of the two bulk materials
forming the bimaterial are taken to be 0.3. For the bimaterial, the two Dundurs’ parameters
are a = 0.75 and f = 0.21. Our calculation shows, at h/H = 1, the energy release rate is
13.55 for the FGM, whereas it is 16.51 for the bimaterial ; at A/H = 0.1, they are 5.51 and
4.61 for the FGM and the bimaterial, respectively; at h/H = 10, they are 6559 and 6517
for the FGM and the bimaterial, respectively. When the crack is at the middle of the plate
(h/H = 1), the energy release rate of the FGM is smaller than that of the bimaterial ; when
the crack is very close to the upper or lower boundary, the former one is larger than the
latter one. But in any case, the two energy release rates are at the same level. This fact
reveals one of the advantages of using FGMs, i.e., FGMs can be subjected to higher
external loads than corresponding bimaterials.

The crack propagation direction follows different criteria for different kinds of
materials. For homogeneous materials, a crack propagates along the direction in which the
mode II stress intensity factor is vanished, and the toughness is independent of the propa-
gation direction and the mode mixity. For bimaterials, the propagation direction of an
interface crack is decided by the driving force and the toughness of the interface and the
two bulk materials. If the toughness of the bulk materials is relatively large, the interface
crack would extend along the interface, otherwise, kinking is favored. For FGMs, their
toughness is likely dependent on the material gradients, the position of the crack tip, the

40 T T -
a0l E’/E'=7 ]
=
::Ee 20} bimaterial i
w
-
10 L
%.0 0.5 1.0 1.5 2.0
| h/H
Fig. 9. A comparison of the energy release rate of the FGM with that of the corresponding
bimaterial.
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propagation direction and the mode mixity. From a continuum point of view, the propa- .
gation direction is the direction at which the difference of the energy release rate and the ‘
‘ toughness reaches a maximum value, as discussed at the end of Section 3. For complete
| understanding of the fracture behavior of FGMs and a fully rationalized FGM charac-
terization, experiments need to be carried out and more specimen configurations need to
be calibrated.
|
\
|
\
\
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Abstract—A physically based computational micromechanics model is developed to study random and
discrete  microstructures in functionally graded materials (FGMSs). The influences of discrete
microstructure on residual stress distributions at grain size level are examined with respect to material
gradient and FGM volume percentage (within a ceramic-FGM-~metal thrée-layer structure). Both
thermoelastic and thermoplastic deformation are considered, and the plastic behavior of metal grains is
modeled at the single crystal level using crystal plasticity theory. The results are compared with those
obtained using a continuous model which does not consider the microstructural randomness and
discreteness. In an averaged sense both the micromechanics model and the continuous model give
practically the same macroscopic stresses; whereas the discrete micromechanics model predicts fairly high
residual stress concentrations at the grain size level (i.e. higher than 700 MPa in 5-6 vol% FGM grains)
with only a 300°C temperature drop in a Ni-AlO; FGM system. Statistical analysis shows that the
residual stress concentrations are insensitive to material gradient and FGM volume percentage. The need
to consider microstructural details in FGM microstructures is evident. The results obtained provide some
insights for improving the reliability of FGMs against fracture and delamination. © 1997 Acta

Meiallurgica Inc.

1. INTRODUCTION

Functionally graded materials (FGMs) are spatial
composites within which the composition of each of
the two material phases that form the FGMs varies
along their thickness direction. The variation is
designed to be tailorable so as to achieve predeter-
mined responses to given mechanical and thermal-
mechanical loadings. Within a FGM, the different
material phases have diffcrent functions. In a
metal-ceramic FGM, the metal-rich side is placed in
the region where mechanical performance, such as
toughness, needs to be stronger; and the ceramic-rich
side, which has better thermal resistance, is exposed
to high temperatures, or placed in the region where
there is a potentially severe temperature variation.
Also, FGMs can reduce the thermal mismatch at the
interfaces of bimaterials and,” therefore, largely
reduce the possibility of fracture caused by the
mismatch. Applications of FGMs include aerospace,
power generation, furnaces and others where strong
material performance, especially the ability to resist
thermal shock, is required or expected.

Material gradients, induced by the change in
material properties, make FGMs different in behav-
jor from homogeneous materials and traditional
composite materials. Over the past few years, there
have been a number of works, both theoretical and
experimental, to study the responses of FGMs to
mechanical and thermal loads under various Joading
conditions, for various geometries and in various

deformation and fracture mechanisms, including
elastic and plastic aspects and crack propagation
[1-11]. Most of the previous studies above focused on
the continuous approach which considers that the
material properties change continuously, as shown in
Fig. 1(b). The continuous model gives correct
solutions to such problems as elastic deformation in
the ceramic-rich side and plastic deformation in the
metal-rich side, when the scale considered is much
larger than that of the grain sizes of the constituent
material phases. It also gives a good prediction for
damage initiation from an imperfection, such as a
void or crack, when the size of the imperfection is
much larger than the grain size.

The microstructures in FGMs are discrete an
random in nature, as schematically shown in Fig. 11a).
The strongly heterogeneous microstructure is likcly,
at least possible, to cause locally concentrated
residual stresses during thermal or mechanical
loading. These locally concentrated stresses, es-
pecially those high in tension, may act to initiate
small cracks and voids. The development of these

small-scale failures may lead to large-scale failures
and result in the fracture of the whole structure. .

Experiments on Si-C FGM by Sohda er al. [11]
showed that the porous microstructure has a much
better resistance against delamination and crack
propagation than the companion dense microstruc-
ture, where the latter has a higher level of local
stresses. Also pointed out by Finot er al. [6], to study
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the local stress distributions and concentrations
within the FGM, microstructural details such as the
heterogeneous microstructure and local plastic
deformation must be considered carefully. The
objective of this study is, therefore, to explore the
microstructural randomness and discreteness vs
macroscopic material gradients and geometries with
respect to the thermal residual stresses and local
residual stress concentrations within FGM micro-
structures. A discrete computational micromechanics
model is developed. In our discrete micromechanics
model, the ceramic grains are treated to be elastically
deformed as the typical ceramic materials; the metal
grains undergo thermo-elastoplastic, finite defor-
mation, and are treated using crystal plasticity
theory. The results, as will be seen in the later
sections, show that local stress concentration at the
grain size level is significant. For the purpose of
comparison, we also solve the problem by the
continuous model.

The plan of the paper is as follows. Both the
continuous and discrete models are described in
Section 2, where a brief description is given of the
crystal plasticity theory used for metal grains.
Numerical results are presented in Section 3. In
Section 3.1, results using the continuous model are
presented, where influences of different gradients on
macroscopic residual stresses are reviewed. In Section
3.2, results using the discrete micromechanics model
are presented, the macroscopic residual stresses as
well as the local stress concentrations are explored
using different material gradients and FGM volume
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percentages. In Section 3.3, the contribution of
plastic deformation within the discrete micremechan-
ics model is studied. In Section 3.4. a short summary
1s given on the statistical analysis of the residual stiess
concentrations with respect to material gradient.
FGM volume percentage as well as the plastic
relaxation. Finally, discussions and conclusions
follow in Section 4.

2. THE CONTINUOUS AND DISCRETE MODELS

The model geometry, as shown in Fig. 2, consists
of three layers: the ceramic layer is on the left side:
the metal layer is on the right side: and the FGM is
sandwiched between them. As a model system, we
choose the metal to be Ni, and the ceramic to be
Al:Os in this study. The FGM is, therefore, Ni-Al.O,
FGM. Both continuous and discrete models for the
FGM, including the numerical consideration, are
described below.

2.1. The contim:ous model

We define x as the relative distance from the
ceramic-FGM interface, i.e. x =0 stands for the
ceramic-FGM interface and x =1 stands for the
FGM-metal interface. For the continuous model for
the FGM, the effective material properties are
assumed to follow the “rule of mixture™:

A (-\.) = VMelul(-\')A Metal + V('eumic(v\')ACuumic, (1)

Material Gradient

Material

// Property

Ceramic
Metal

(b) Continuous Model

Fig. 1. Schematic drawings of functionally graded materials (FGMs): (a) discretc and random
microstructure in reality. and (b) continuous gradient modeling often used.
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Fig. 2. Schematic drawings of ceramic-FGM-metal three-laver structures used to model the functionally
graded materials. with (a) continuous model and (b) discrete micromechanics model. The insert to (b)
shows the deformation gradient decomposition for a metal single crystal.

where A4 stands for either the elastic constants, £
(Young's modulus) and v (Poisson’s ratio). or the
thermal expansion coefficient . Fuaa(X) and
Veaamic(x) are the volume fractions of metal and
ceramic, respectively, at the position x. The simplified
material property form overlooks the interactions of
the 1wo material phases at the microscopic level. so
it leads to an approximate solution. The more
accurate material property variation form at the
macroscopic level requires a better understanding of
FGM microstructure and its deformation, which are
the focus of this study. We will only obtain the elastic
solution for the continuous model. and it is mainly
for comparison with the solution obtained by the

discrete model. Plastic deformation of the sandwich
structure was studied using a continuous model in
Giannakopoulos et al. [} and Finot et al. [6].

The thermoelastic solution in this case may be
obtained analviically [3]. Here. a finite element
method is used for the purpose of examining its
accuracy for FGMs. In the implementation. the
FGM laver is divided into 30 micro-layers. as shown
schematically in Fig. 2(a). and the material properties
of each micro-layer are taken to be constants.

2.2. The discrete micromechanics model

We have developed 2 computational micromechan-
ics model for FGMs using the crystal plasticity
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theory. Figure 2(b) shows the mode! geometry for a
FGM consisting of the metallic and ceramic grains
randomly distributed within it. The macroscopic
material properties obtained by statistical processing
of the random distribution of the metal and ceramic
grains vary continuously along the thickness direc-
tion. and give their desired variation forms. Each of
the metal grains has its own crystal orientation (also
randomly distributed) which is shown by the angle y
in Fig. 3, and its thermoplastic behavior is assumed
to be governed by crystal plasticity theory. The
ceramic grains are modeled using the standard lincar
elasticity theory.

The two-dimensional idealization shown in Fig. 3
was introduced by Harren et al. {12}, Harren and
Asaro [13) and McHugh et al. [14] for f.c.c. or b.c.c.
polycrystals and their metal matrix composites. The
three slip systems are arranged in an equilateral
triangle. and the reference laboratory base vectors X;
are at an angle i with respect to reference crystal base
vectors a,. The slip directions in this model geometry,
si, s; and s;, represent the close-packed directions of
an assemblage of close-packed circular cylinders.
Since, in a two-dimensional model two independent
slip systems can accommodate arbitrary increment of
plastic strain, the three independent slip systems here
resemble the redundancy exhibited by both f.c.c. and
b.c.c. crystals. We note that using traditional metal
plasticity theories (i.e. J> flow theory) would give us
similar results for Ni (f.c.c.). If any low-symmetry
crystals (say NiAl or TiAl) are involved, then crystal
plasticity theory is necessary to account for the
orientation dependent deformation behavior.

The single crystal constitutive theory, in its present
form, was developed by Asaro and his coworkers
[14-21). The theory which will be briefly described
below builds on the pioneering work by Tavlor [22]
and Hill and Rice [23].

™~

N2
S M
m, \{ .
\753 Sy X a,
; ‘51 "
— m] . Xl

Fig. 3. Two-dimensional model single crystal slip geometry

used for metal grains, The three slip systems are arranged

in an equilateral triangle, ind the reference laboratory base

vectors X. are at an angle ¥ with respect to reference crystal
base vectors a,.
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The total deformation gradient is decomposed into
plastic (F*). thermal (F"), and lattice (F*) pars. as
shown in the insert of Fig. 2(b). If uw is the
displacement vector and X the material position
vector with respect to the reference (undeformed)
state, F =1 4+ Cu'cX (I is the second-order identity
tensor) and

F=F*F"F" (2)

Plastic deformation occurs by the flow of material
through the lattice. via simple shearing. across planes
with unit normals m, and in directions s,: here m, and
s, represent a crystallographic slip plane normal and
a slip direction, respectively. and z is an index that
designates a slip system. If 7, is the slip rate on the
% slip system, then the velocity gradients of this
plastic shear flow can be writien as

FPF- =Y hsm,. 3)

2

where the sumimation is over all active slip systems.
The thermal parts of the velocity gradients are
described as

FlF-t! = =Y Y a2 4
7

i

where 6 represents temperature and a is a tensor
whose components, «;, with respect to the time
independent Cartesian base vectors, a;,, are the
thermal expansion coefficients. The base vectors are
aligned with the crystal lattice in the reference
configuration in some standard way, e.g. in cubic
crystals. It is most convenient to align the a. base
vectors with the cube axes. in which case x would be
diagonal with all components equal.

In general, 7, will be a function of temperature,
stress state and material state. As a specific example
we have used expressions such as

1a
} (5)

to represent strain rate sensilive power-law type
behavior. In the expression, n is the material rate
sensitivity parameter, 1, is the resolved shear stress on
the slip system z, and g, > 0 is its current strength.

The slip system hardness. g,, is obtained by the
path-dependent  integration of the evolution
equations of the form:

=,=Z =ﬂ(:-l)|lli[+g: T = [ Zlnldl (6)

£

where 7, is the accumulated sum of slips, /,; is a
matrix of hardening moduli and g; is the rate of
change of slip system hardness with respect 1o
temperature alone. The initial condition for this
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Table I. Elastic properties used for the computations

RESIDUAL STRESSES IN GRADED MATERIALS

E (GPa) v y (K-%)
Al:O: 380 0.23 74 x 10-*
Ni 214 0.38 154 x 10~
evolution is given by
g:(7. =0, 6) = g(0), M

where 0 is the temperature.

The detailed development of these constitutive
relations can be found in McHugh er al. [14). This
constitutive theory has been implemented into finite
element codes, using a rate tangent method
introduced by Pierce er al. [18].

3. RESULTS

The geometry of the sandwich structure is specified
in Fig. 2. To avoid the edge effects, the total
length/width ratio (Lo/(H + 2h)) was chosen to be 5,
while only the center part with length L(L < 0.25Lo)
was considered when performing residual stress
analysis. Two sets of FGM interlayer thickness, i.e.
H/(H + 2h) = 40 and 70 vol%, were used.

To make this complicated boundary value problem
manageable computationally, a relatively coarse
mesh (i.e. four triangular elements per grain) is used
in this study and simple square grains are employed.
Doing so, as Taylor [22, 24] and many others [25-27]
did successfully in modeling polycrystalline materials,
effectively treats the deformation within each
individual grain as uniform. The finite element model,
however, takes the interactions between all constitu-
ent grains into consideration, which is not achievable
using Taylor or Sachs type models. In studying the
interactions at the grain size level, this model design
is at least a first-order approximation. Also, in
keeping all the microstructural “building blocks™ (i.e.
ceramic and metal grains in the discrete model)
exactly the same, the relative importance of material
gradient and FGM volume percentage can be
identified.

The specific FGM system is the Al;O;-Ni system.
In this study, the major focus is on the relative
importance of the discrete and random microstruc-
ture vs FGM volume fraction and gradient functional
form. With that in mind, and noting that all the case
studies shown later were performed under a relatively
small (300°C) temperature variation. for simplicity
the elastic properties were taken to be constants. The
material properties used for the computations are
listed in Tables 1 and 2. A 1wo-dimensional plane

Volume Fraction of Metal in the FGM

1.0

0‘00.0 02 0. 08 0.8 1.0
Relative Distance (x)

Fig. 4. Different gradient functions used in the residual
stress analysis.

strain deformation condition was imposed. The
thermal loading was induced by cooling the structure
by 300°C. The temperature was assumed 1o be
uniform within the three-layer structure. and the
sandwich structure was set to be stress free at the
beginning temperature. For the metal grains, linear
interpolation was used to obtain the temperature-de-
pendent critical resolved shear stresses go(6) in
equation (7) between the several temperatures shown
in Table 2. The shear strain hardening / in equation
(6) was taken to be 77.4 MPa, which was converted
from the data in Ref. [28) using a Taylor factor of
3.06 for f.c.c. polycrystals with the linear hardening
assumption. A low material rate sensitivity parameter
is given as n = 0.005 in equation (5).

We write Vrgu as the volume fraction of Ni within
the FGM layer, and x as the relative distance from
the Al-O~FGM interface (i.e. x = 0 stands for the
Al:O,~FGM interface and x =1 stands for the
FGM-Ni interface). As shown in Fig. 4, three
functional forms were used in the computations:

Linear: TFrou(x) = x, (8a)
FGM/1: Frau(x)=1—=(1 —x), m=24, (8b)
FGNI;Q: Vpg_\g(.\') = X", ms= 2. 4. (SC)

When m = 1, both FGM/1 and FGM/2 reduce to the
linear case of equation (8a). and when m =2
functions in the FGM/1 class have zero slope at the
FGM-Ni interface (x = 1). wherezs the functions in
the class FGM 2 have zero slope at the Al:O-FGM
interface (x = 0).

Table 2. Plastic properties of Ni grains used in the computations

T(C) 20 127 227
g, (MPa) 148 153 140
terss’ (MPa) 484 50.0 45.8

327 427 527 627 727 827
138 115 100 69 59 45
45.1 376 2.7 225 19.3 14.7

“Data from Suresh er of. [28).
*Calculated from o, with a Taylor factor of 3.06.

]
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3.1. The continuous model—macroscopic siresses Us
material gradients and FGM volume percentuges

For this problem. the only non-zero stress
component is the in-plane normal stress along the X
direction. Figures 5(a) and (b) show the results of the
in-plane normal stress distribution along the X}
direction for the 40 and 70 vol% FGM, respectively.
Due to the presence of the FGM layer, the stresses
are continuous, and have continuous derivatives
wherever the material property variation function in
equations (8) is. It is noteworthy that although the
existence of the FGM layer in general decreases the
stress at one or both of the interfaces, for power index
m < 2 in equations (8), there is an extremum in the
FGM layer. and this extremum in some cases has a
magnitude close 1o that of the normal stress at the
interface in the base-line case, ie. a sharp
ceramic—metal interface without the FGM layer {29).
Comparing Fig. 5(b) with Fig. 5(a), it is found that,
in general, increasing the relative FGM volume
percentage decreases the stress at one or both of the
interfaces. These results are similar to those found in
Giannakopoulos ef al. [5}.

Next, we will explore how the local stress
concentrations interact with material gradient as well
as the FGM volume percentage. The averaged
physical meaning of the continuous solution will be
clearer when we present the discrete solution below
and compare the two solutions.

3.2. The discrete model—local stress concentrations
and macroscopic stresses

In this section. the discrete micromechanics model
is used and only elastic deformation is considered.
Plasticity effects will be studied in the next section.

Figure 6 shows contour plots of (a) ¢x. and (b)
averaged in-plane principal stress (p = (o1 + 622)/2)
developed in the 40 vol% FGM with linear gradient.
It is clearly seen that the local stress concentration is
quite high and the stress field is very inhomogeneous.
i.e. the stress variations among many of the adjacent
grains are significant. The ¢, was also found to be

RESIDUAL STRESSES IN ‘GRADED MATERIALS

inhomogeneous. Due to the thermal mismatch
between ceramic grains and metal grains. most metal
arains experience large tensile stresses: and this is
especially true for metal grains near the ceramic-
FGM interface and those in the middle region of the
FGM laver.

Additional computations were performed using
different gradient functions. Figure 7 shows contour
plots of averaged in-lane principal  stress
(p = (61 + 0x)/2) developed in the 40 vol% FGM
with (a) gradient function Veew=1—-(1 —x)
(FGM/1 m = 2), and (b) gradient function Vegy = X°
(FGM;2 m = 2). The distribution of stresses is quite
different with different gradient functions, as can be
seen clearly from Figs 6(b). 7(2) and 7(b). Detailed
examination of Figs 6 and 7 tells us that, in almost
every local region (say take 5 x 5 grains as the region
size) where the ceramic grains are more than 40 vol%,
there are always some metal grains experiencing
significant tensile stresses for all three cases. The
results for the 70 vol% FGM were similar to those for
the 40 vol% FGM.

For such discrete .and random microstructures,
more physical insights can be gained via the statistical
analyses of the stress distribution. Figure 8(a) shows
the distribution profiles of p = (o1 + g=)/2 devel-
oped in the FGM layer (40 vol% FGM) with three
different gradient functions; Fig. 8(b) shows the
distribution profiles of p developed in the FGM layer
(linear gradient) of a 40 and a 70vol% FGM,
respectively. The three distribution profiles in Fig.
8(a) are distinctively different: (i) the distribution
peak between 50 and 200 MPa (mostly in metal
erains) drops as the total metal composition in the
FGM layer decreases; and (ii) the distribution peak
between —50 and —250 MPa (mostly developed in
ceramic grains) increases as the total ceramic
composition in the FGM layer increases. The FGM
volume percentage also has large infiuences on the
distribution profile of p, see Fig. 8(b): the distribution
peak for tensile stresses shifted from around 110 MPa
(40 vol% FGM) to about 50 MPa (70 vol% FGM);
and the distribution peak for compressive stresses

500
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Fig. 5. In-plane normal stress distributions along the Xy direction using the continuous model with (a)
40 and (b) 70 vol¥s FGM, respectively.
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Fig. 6. Contour plots of (a) oz, and (b) averaged in-plane principal stress (p = (o1 + 02)/2) developed
within the linear gradient, 40 vol% FGM. Only elastic deformation is considered here.

shifted from around — 150 MPa (40 vol% FGM) to
about —50MPa (70 vol% FGM). However, the
distribution profile for high stresses, ie. for
p < 500 MPa or p > — 500 MPa, are found to be_
insensitive to material gradient and FGM volume
percentage.

Finally, for the purpose of comparison, we
averaged the stresses over each column of elements to
get the mean stress along the vertical direction.
Figure 9 shows the macroscopically averaged
in-plane normal stress developed within the discrete
microstructures (shown by separated symbols) as
compared to the curves obtained using the continu-
ous model (shown by continuous lines). It is
interesting to see that, although there are a lot of local
stress concentrations, the two types of modeling

approach given practically the same averaged (or
macroscopic) stresses. In an averaged sense, only
small variations can be found in Fig. 9 for the discrete
microstructure model due to the local randomness
and discreteness. This shows that the macroscopic
stresses are those based on a scale much larger than
the grain size and obtained without considering
certain details, such as local stress concentrations, at
a smaller scale.

3.3. The discrete model—influence of plastic defor-
mation

In this section, we explore the effects of plastic
deformation within the metal grains in the discrete
microstructure. Besides the concentrated stresses.
large, locally concentrated plastic strain accum
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Jation during repeated thermal cycling may also
initiate failure.

Figure 10 shows the contour plots of (a) averaged
in-plane principal stress (p = (6 + 0::)/2), and (b)
accumulated sum of slips (7.) developed in the linear
gradient, 40 vol% FGM. The temperature drop was
from 700 to 400°C, and the plasticity parameters were
taken to be as listed in Table 2. Similar to the
thermoelastic case, the stress distribution is again
inhomogeneous, with many metal grains experiencing
high tensile stresses and many ceramic grains
experiencing high compressive stresses. If we compare
Fig. 10(a) with Fig. 6(b) (elasticity only), the stress
concentration in the ceramic grains is significantly
reduced in the region where metal content is greater
than 70 vol%, due to plastic relaxation. With only a
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Fig. 7. Contour plots of averaged in-plane principal
FGM with (a) gradient function Vegu=1-(1 ~
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300°C temperature drop, Fig. 10(b) shows that: (j)
there are plastic strain accumulations in many of the
metal grains, and (ii) certain sites have relatively high
strain accumulations, about 1.5%. The high strain
accumulation sites seem to appear in the regions
where metal content is between 50 and 75 vol%.
Figure 11 shows the distribution profiles of p
(=(on + 02)/2) developed within the FGM layer
(linear gradient, 40 vol% FGM), for both the elastic
and the elastoplastic case. The plastic relaxation
effect is very clear here in this case, where stresses are
in general shifting to lower magnitudes with
plasticity. The distribution profile for high tensile
stresses with p > 700 MPa, however, has reduced
only slightly with plastic relaxation. Similar to the -
thermoelastic case, the stress distribution profile for

p (MPa)
794.657

641.013
487.37
333.726
180.083
26.439
-127.205
-280.848

-434.492

p (MPa)
697.896

548.14

398.383
248.627
98.8704
-50.886

[ -200.642
-350.399
-500.155

-649.912

-798.668

stress (p = (o1 + on)/2) developed in the 40 vol%
x)* (FGM/l m=12), and (b) gradient function

Viom = x* (FGM/2 m = 2). Only elastic deformation is considered here.
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Fig. 8. (a) Averaged in-plane principal stress (p = (¢n + 022)/2) distribution profiles developed within the
FGM layer (40 vol% FGM) with three different gradient functions; and (b) distribution profiles of p
developed in the FGM layer (linear gradient) of a 40 and a 70 vol% FGM, respectively.

high tensile stress regions is insensitive to material
gradient and FGM volume percentage. On the other
hand, the distribution profile for high compressive
stresses with p < —~ 250 MPa (mostly in ceramic
grains) drops significantly. This suggest that, when
ceramic grains are subject to tensile stresses if
temperature increases, the plastic relaxation effects
may reduce their tensile stress concentrations.

We average the stresses over each column of
elements for the plastic solution to obtain the averaged
in-plane normal stress. Figure 12 plots the macro-
scopically averaged stress for both the elastic and the
elastoplastic case. Comparing Fig. 12 with Fig. 10(b),
it is found that the metal rich section and part of the
pure metal region are under general macroscopic
yielding, which sets the maximum magnitude of the
macroscopic stresses for the plastic case.

3.4. The statistical analysis of residual stress concen-
trations—averaged peak stress

Since the stress distribution profiles of p for the
high stress area shown in Figs 8 and 11 are small, to

500 ¥
Continuous Gradient
awo | 40voI% FGM rintins
— 3 Discrete Microstructure
&
£
bl
v
e
&
®
E
S
-4
@
14
K]
o ‘
£ : %' FGM2me2
-400 1
-500 4 . . .
0.0 0.? 04 0.6 08 1.0

Relative Distance

Fig. 9. Macroscopically averaged in-plane normal stress
developed within the discrete microstructures (shown by
separated symbols) as compared to the curves obtained
using the continuous model (shown by continuous lines).

get more reliable statistical results we employ 6 vol%
APSP to treat the data in these figures. The 6 vol%
APSP (averaged peak stress of p) is the stress p
averaged over the 6 vol% microstructure of the FGM
layer which has the highest tensile stresses (p).
Similarly, we can obtain 3 vol% APSP, 9 vol% APSP
etc. Figure 13 shows the 6 vol% APSP (averaged
peak stress of p) for different material gradients and
different FGM volume percentages, and for both the
elastic solution (marked with El) and the elastoplastic
solution (marked with Pl). From Fig. 13, the
distribution profile for high tensile stresses is again
found to be insensitive to material gradient and FGM
volume percentage, and the plastic relaxation effect is
relatively small for the high stress regime. Similar -
conclusions can be drawn from the 3 vol% APSP
(averaged peak stress of p).

The above statistical results are interpreted by the
following observations. As mentioned before, high
tensile stresses always occur in those metal grains
surrounded by many ceramic grains. Comparing
those stresses in Figs 5 and 9, the stress concen-
trations in these metal grains are found to be an order
of magnitude higher than the macroscopic stresses in
the FGM layer. Considering the large number of stiff
ceramics around each of those metal grains, the high
local stresses are believed to be insensitive to the
macroscopic physical parameters. The effect of
material gradient and FGM percentage on the
macroscopic stresses is mainly due to the change of
the distribution profiles in the middle parts of Figs 8
and 11, which have lower magnitude of stresses.

For the small plastic relaxation for local stress
concentrations shown in Fig. 13, this can also be
related to the fact that peak tensile stresses always
occur in metal grains where a lot of ceramic grains are
surrounded. The general stress state induced in such
metal grains is mostly all around tension, i.e. 6, = 72
where ¢, and ¢, are the two in-plane principal
stresses. With 6, & ¢., the maximum shear stress
Tmax = (01 — 62)/2 is therefore small. No matter how
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Fig. 10. Contour plots of (a) averaged in-plane principal stress (p =
sum of slips (7.) developed in the linear gradient, 40 vol%

low the yield strength is in the metal grains, small
shear stresses can hardly produce any plastic
deformation, and therefore are not helpful in relaxing
this kind of stress state.

4. DISCUSSION

A physically based micromechanical model is
developed to study residual stress distributions and
concentrations in the FGM sandwiched between two
dissimilar materials during thermal loadings. The
results obtained reveal detailed information of
microstructural behavior at the grain size level. and
thus provide some insights for optimizing FGMs and
the control of their failures.

It is stressed that the scale level we are concerned
with in this study is at the grain size level and

(on + 02)/2), and (b) accumulated
FGM. Plastic deformation is considered here.

upwards. Using the relatively coarse mesh and
square “building blocks™ is a first-order approxi-
mation to the reality, and not intended for subgrain
level microscopic features. For example, a very
refined mesh will show very high stress concen-
trations (in fact singularities) at the inter-phase
corners. Due to the relative small Eao,/Exi ratio
(1.77), the singularity is a fairly weak one, which
means high stress regions will only occupy a very
small volume fraction. It is shown that in the case
of two elastic bonded quarter planes, the order of
the singularity is about 0.05 (1/r*, & = 0.05) for such
an elastic difference, see Bogy [30). This kind
of singularity is thus expected to have little (i.e.
second order) effect on the averaged grain level
stress. However, if 5-6 vol% of the FGM grains
have some averaged tensile stresses higher than
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Fig. 11. Averaged in-plane principal stress (p = (611 + ¢2);

2). distribution profiles developed within the FGM layer

(40 vol% FGM, linear gradient) for both the elastic and the
elastoplastic case.

700-800 MPa, only higher local stresses can be
expected near those subgrain level microscopic
features.

The grain level microscopic stress concentrations
are found to be quite high, of the order of 800 MPa,
with only a 300°C temperature drop; whereas the
macroscopic stresses are much lower than the
microscopic stresses. This suggests that, if high tensile
stress concentration at the grain size level is the
failure initiation mode at this size scale, there are
always micro-fractures at the grain size scale during
thermal loading. Since the stress distribution profile
for the high stress region is quite insensitive to
material gradient and FGM volume percentage as
shown in Section 3, the above conclusion is
independent of those two macroscopic parameters.
On the other hand. the high stress region in the
stress distribution profile is relatively small (about

800}
700 | Pl M
600 |-

500} : ¢

400

Lincar

300k

FGM/I m=2
FGM/2 m=2

200}

100

Relative Distance
Fig. 12. Macroscopically averaged in-plane normal stress
developed within the discrete microstructure (40 vol%
FGM, linear gradient). for both the elastic and the
elastoplastic case.

5-6 vol% with stress p above 700 MPa). Whether the
small-scale micro-fractures at the grain size level will
develop into large-scale fractures to cause the fatal
damage of the whole structure depends on other
factors whose effects require further investigation,
such as stress redistribution after small-scale failure
initiation, loading history and the grain boundary
adhesion between the adjacent grains. The present
computational micromechanics model can be ex-
tended to account for these influences.

For optimizing the microstructure, since the dense
structure results in high local stress concentrations,
our results suggest that for achieving higher
toughness the porous microstructure should be
considered; and this is consistent with the experimen-
tal observation by Sohda er al. [11] on the Si-C
FGM. Their experiments showed that the porous
microstructure has a much better resistance against

Lincar
FGM/1 m=2
FGM/2 m=2

&

P i
g .

6vol% Averaged Peak Stress of p (MPa)

(=4

40vol% FGM

70vol% FGM

Fig. 13. The 6 vol% averaged peak stress of p (APSP) developed in FGM microstructures with different
material gradients and different FGM volume percentages for both the elastic solution (marked with “EI™
on top) and the elastoplastic solution (marked with *PI" on top).
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cracking than the dense microstructure. Also, in a
recent review paper. Koizumi and Niino [31}] listed
micropore as one of the most important material
constituencies in FGM microstructures. Regarding
the grain sizz. the extent of micro-fracturing exhibits
large sensitivity to the grain size in ceramic
polycrystals subject to thermal loading, being more
severe in coarse grained ceramics {32, 33]; therefore,
a fine grain sized microstructure is suggested to
improve the FGM’'s resistance against cracking and
delamination.

Other microstructural factors, such as grain shape,
grain size and third-phase particle, are beyond the
scope of the present work, and are the considerations
of later studies. The results shown here have clearly
demonstrated the need to consider microstructural
details in modeling FGMs for determining their
mechanical behavior: due to the microstructural
discreteness, Jocal residual stress concentrations play
a very important role in failure initiation.
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1 Introduction

The mechanics of functionally graded materials (FGM), in-
cluding crack problems, have been intensively studied recently.
It has been shown that for FGM crack problems the crack tip
has a regular square-root singularity, the stress and displacement
near-tip fields are of the same forms as those for homogeneous
materials (see Delale and Erdogan, 1983, 1988; Gu and Asaro,
1997a. b). So the infiuence of material gradients at the near tip
manifests itself through the stress intensity factors. In other
words, the stress intensity factors uniquely characterize the near-
tip field. Knowing the structure of the crack-tip field, it is im-
portant to accurately calculate the stress intensity factors and
determine the effect of material gradients on them for different
geometries and loadings, including those often-used specimens.
Finite element analysis which can handle difficult material be-
haviors and geometries as well as various loadings provides
useful and the most often-used way to solve mechanical and
thermal problems including those invelving FGMs. In this pa-
per, we present a simple and sufficiently accurate finite element
method for calculating the crack-tip field for FGMs, which can
be easily incorporated into existing finite element codes and
commercial software packages without much additional work.

The often-used method to calculate the crack-tip field, stress
intensity factors (elastic case), and encrgy release rate (elastic
or plastic case), involves evaluating the J-integral (Rice, 1968)
using the solved stress and deformation fields around crack tip.
For homogeneous materials, this has been an efficient way since
the path independence of the J-integral allows us to perform
the calculation along a path not 100 close to the tip so that the
inaccuracy of field variables at the tip region due to the singular-
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A Simplified Method for .
Calculating the Crack-Tip Field
of Functionally Graded Materials
Using the ngain Integral

!

A finite element based method \i’; proposed for calculaiing stress intensiry factors of
Sfunctionally graded materials (‘i;fGMs). We show that the standard domain integral
is sufficiently accurate when applied 10 FGMs; the nonhomogeneous term in the
domain integral for nonhomogentous materials is very small compared 1o the first
term (the standard domain integral). In order 10 obiain it, the domain integral Is
evaluated around the crack tip using sufficiently fine mesh. We have estimated the
error in neglecting the second term in terms of the radius of the domain for the
domain integration, the material properties and their gradients. The advantage of
the proposed method is that, besides its accuracy, it does not require the input of
material gradients, derivatives of material properties; and existing finite element
codes can be used for FGMs without much additional work. The numerical examples
show that it is accurate and efficient. Alsc, a discussion on the fracture of the FGM
interlayer structure is given.

ity can be avoided. Later, the domain integral method has been
developed to perform the caiculation of the J-integral (Li, Shih
and Needleman, 1985; Shih, Moran and Nakamura, 1986;
Moran and Shih, 1987). The domain integral method has been
shown to be more efficient and more accurate than direct calcu-
lation of the J-integral, since the domain integration comes
more naturally than the line integration of the two-dimensional
space and the surface integration of the three dimensional space
in finite element analysis. Works along similar line as the do-
main integral can be found in the early papers by Parks (1974,
1977), Hellen (1975) and deLorenzi (1982), whose virtual
crack extension method is the special case of the domain inte-
gral. The domain integral method has been implemented in
numerous programs to solve crack mechanics, including the
well-known commercial package ABAQUS. In this paper. we
use the domain integral methodology to treat the FGM case. In
the non-homogeneous case, there is an additional term besides
the regular one due to the variation of material properties. In
our analysis of two-dimensional elastic crack problems of non-
homogeneous materials, to capture the singularity and material
property variation, the mesh is designed such that the smallest
elements at the crack tip are very small, about 107 times a
characteristic length, which is usually the crack length, and even
much smaller for inelastic problems. The material variation is
achieved by using corresponding material properties at Gauss
integration points (different Gauss points have different proper-
ties). For such mesh design. to perform the domain integration,
the domains can be chosen as the circular regions formed by
the first few rings of elements. In such a situation. we show
that the second term in the domain integral for nonhomogeneity
is very small compared to the first term, the standard domain
integral, and may be neglected. Therefore the domain integral
can be calculated numerically in the same way as that for homo-
geneous materials, using the standard domain integral. From
the numerical point of view. this allows us to apply existing
finite element programs for homogeneous materials to nonho-
mogeneous Inaterials, avoiding the additional programming
work.

The current study is focused on elastic two-dimensional and
three-dimensional problems. The method may also be extended
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1o the nonlincar material behavior. The numerical examples
given include a sandwiched structure with a FGM interlayer,
which illustrates the advantage of using FGM to reduce material
mismatch between the upper and lower layers. For such struc-
tures. cracks may form at one side and propagate to the other
side through the FGM interlayer when the microscopic defects
and external loading are favorable. The crack in the sandwiched
structure solved in this paper is along the layers’ thickness
direction with the crack tip inside the FGM, and the loading
includes remote bending. three-point bending. and four-point
bending. This kind of configuration may also be good for frac-
ture testing of FGMs since the FGMs are usually very thin so
that mechanical testing may be handled when bonding them to
two bulk materials. In general, the solutions to the three-point
bending and four-point bending specimens depend on several
parameters, including geometry, Joading. and material variation.
We write them in a compact form such that the functionality
of each parameter may be clearly understood. These examples
show a way to systemically present the solutions so that they
can be documented and are easy to use in practice.

The paper consists of three sections. Besides this Introduc-
tion, Section 2 is the discussion of the domain integral method
in which we estimate the second term due to nonhomogeneity
and show that based on the analysis, the term can be neglected.
Section 3 contains numerical examples.

2 Numerical Method

The crack-tip stress field in a FGM has a regular singularity
(see Delale and Erdogan, 1983, 1988; Gu and Asaro, 1997a,
b) and the singular term for plane problems is given by

K K
oy = —=0j(8) + S ()]

V2wr \2%r

1

where the angular functions ¢ j; and o |/ are independent of mate-
rial properties and their variations and are the same as those
for homogeneous materials. The displacement singular term is

given by
=2 [« 22 | e, @
2ue \ 27 2u0 \ 2%

Here, po is the shear modulus at the crack tip. The angular
functions 1/ and 1/ are also independent of material gradients,
and are the same as those for homogeneous materials. Material
gradients only affect the near-tip fields through the mode 1 and
mode IT stress intensity factors, K; and K);. The energy release
rate is defined as

6--2 (3)

da

which is related to the near-tip field by
4)

where E, is Young's modulus at the crack tip. The energy
release rate can be represented by the following line integral:
J = limf (W6, — a)ndC (5)
=0 VT
where W is the strain energy density and n; is the outward
normal of the path T, which starts from a point on the Jower
crack face and ends at another point on the upper crack face.
For the homogeneous case, the integral under the limit is diver-
gence free: therefore. it is path independent and the limit is not
needed. In this case. the J in (5) is Rice’s J-integral (Rice,
1968). For nonhomogencous materials, path independence oc-
curs when the crack is perpendicular to the material property
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Fig. 1 A simply connected domain A, enclosed by the contour C (C =
C, + C, + C3 + C.) near crack tip. The domain is where the domain
integral is evaluated.

variation direction, since in this case the integral is still diver-
gence free.

There are usually several ways to calculate stress intensity
factors after the stress and displacement fields are obtained.
In the stress matching and displacement matching. the stress
intensity factors are obtained by extrapolating from the stresses
or displacements ahead of the crack tip using (1) or (2). For
example, K, is obtained by substituting the obtained normal
stress ahead of the crack tip into (1). The matching method
has the advantage that almost no additional calculation is re-
quired even in the FGM case, but it requires a high degree of
mesh refinement and often suffers from instability as the crack
tip is approached (see Anderson, 1995). Another way. the do-
main integral method, which is an energy approach based on
the J-integral and which has been proved to be efficient for
homogeneous materials, is the focus of our numerical study
here.

In the domain integral method, the energy release rate J is
calculated through an area integral in the two-dimensional case
and stress intensity factors are then obtained using (4). The area
integral approach provides much better accuracy than directly
evaluating the contour integral in (5), and is easier to implement
numerically. Early works along the line of the energy approach
were given by Parks (1974, 1977). Hellen (1975), and deLore-
nzi (1982). Shih and his co-workers (see Li, Shih, and Nee-
dleman. 1985; Shih. Moran, and Nakamura, 1986; Moran and
Shih. 1987) formulated the domain integral methodology in a
general way. For homogeneous materials, it has been applicd
in above works to elastic and plastic material responses. me-
chanical and thermal loadings, and two-dimensional and three-
dimensional spaces. We will discuss the application of the do-
main integral to nonhomogeneous materials. In particilar. we
will show that the integral term representing the effect of nonho-
mogeneity may be neglected when evaluating the integration at
a region close the crack tip; therefore, the standard domain
integral for homogeneous materials gives sufficient accuracy.
We will discuss the elastic case; the conclusion may be extended
to the power-law hardening case, i.e., HRR singularity (Hutch-
inson, 1968; Rice and Rosengren, 1968).

Consider an annular region A, around the crack tip in the
two-dimensional case. as shown in Fig. 1. For simplicity in the
discussion, we consider that the material variation is along the
x-axis; and only one of the two material parameters, the Young's
modulus, has a gradient where the Poisson’s ratio is taken as a
constant since its variation is usually small compared to the
former. The conclusion obiained below can be extended 1o the
general material variation case. Both the inner and outer bound-
ary of the region A, are sufficiently close to the crack tip. The
J given in (5) can be written in terms of the boundary integral.

J= 98 (ogttiy — W) gmyds (6)

C
where C = G + Cy + C, + Cyis the boundary of A, m_ix the
outward normal of A;; on Cy, m; = —n;, and on Ca. . = 0.t
and ¢ is a smooth function which has the value of unity on i
and zero on Ca. Applying the divergence theorem (o (0} pives
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Fig. 2 Finite element mesh of the crack-tip region. In our calculation
four-node bilinear elements are used. The smallest element at the tip is
405 times a characteristic length.

J=f(%mp4%mqﬂA—f W,gdA. (7)
Ay A

v

Here, W = W[E(x), e(x, y)]. The derivative of W under the
second integral is with respect to the coordinate x in E(x).
Comparing with the homogeneous case. the second integral is an
additional term which represents the effect of nonhomogeneity.

In numerical implementation, the inner contour C, is usually
taken as the crack tip, and the outer boundary C, is taken to be
the same as element boundaries. The function g defined above
is an arbitrary function as long as it gives the correct values at
the boundaries, C; and C.. It was shown by Shih and his co-
workers in the previously mentioned papers that the calculated
J is insensitive to the choice of ¢. The value of it within an
element may be taken as

g =2 Ng: (&)

where N; are the shape functions of the element. 1 is the number
of nodes per element. and ¢; are the nodal values of g, which
are assigned in accordance with a smooth function varying from
zero at the outer boundary to unity at the crack tip. The deriva-
tive of ¢ with respect 1o the coordinate x; is

2

: 9
Ox;, Dy a0 O Ox; ! )

where 7 are the coordinates in the isoparametric space. Evaluat-
ing the quantity under the integral in (7) at the Gauss integration
points, J is obtained numerically by

J=3 z {[(0’,111,:.] - Wé)g,; — W,g] det (g—’;)} Wy
»

A; p=1 A

(10)

Here, w, is the weight function of integration, and det (*) is
the determinant of Jacobian matrix.

The mesh design for our nonhomogeneous problems is a
standard mesh design for crack problems. The crack tip is sur-
rounded by an arrangement of wedge-shaped isoparametric ele-
ments. The same type of elements makes circular rings which
surtound the wedge-shaped elements at the tip (see Fig. 2). In
this region, the size of the elements increases along the radial
direction according to the exponential scale which gives the
unit aspect ratio of the elements. The smallest clements at the
crack tip are smaller or equal to 10 %, where a is a characteris-
tic length. Between the circular region and the region far away
from the tip where the stresses vary regularly, there is a transi-
tion zone in which the element shape changes gradually from

Journal of Applied Mechanics

the curved polygon to the regular element shape. The gecometry
of a typical mesh of this kind was shown in the previously
mentioned papers (also see Shih and Asaro. 1989). It is noted
that near the tip the mesh needs to be refined to,account for the
high-stress gradients associated with the singularity: in the FGM
case, also to account for the material property variation.

Using this type of mesh, we show here that if we evaluate
the domain integral in the region sufficiently small around the
crack tip, the value of the second term in (7) involving the
derivative of Wis very small, essentially negligible. The domain
integral in practice can be calculated in the region close to the
crack tip (the circular domain consisting of the first 10 or 20
circular rings of elements at the crack tip zone) as demonstrated
in the next section. In our calculations, as mentioned above,
the smallest element is in the size of 10 °a, where a is the
characteristic length. In such a situation, the second integral in
(7) may be estimated as follows. Using the above mesh design,
the first 10 or 20 rings of elements are arranged within the
radius 10~*a from the crack tip. The weight functions for the
two integrals in the expression (7) are ¢ and g ;. If the pyramid
shape for the function ¢ (Fig. 3(a)) is used, its derivative with
respect 1o the coordinates is on the order of 10 ™' considering
that the domain is within a circle with radius 10 ~*a. Then, the
weight functions of the first and second integrals are of the
orders 10* and 1, respectively. Note that a™' in the derivative
of g has been moved 10 the integrand of the first integral. The
first integral is overweighted by its weight function compared
1o that of the second. On the other hand, the two integrands are
not Jikely to differ by such a Jarge amount as that of the weight
functions, i.e., to be of the same order. This is due to the follow-
ing: (2) they both are essentially energy density terms (energy
density unit/length) calculated using stress and strain fields;
(b) both are proportional to the loading, the square of the stress
intensity factor K7; and (c) the first is proportional to the
inverse of the modulus and the second is proportional to the
derivative of the modulus divided by the square of the modulus.
Since such a small domain for the domain integral is well within
the K-dominance zone, the asymptotic expressions (1) and (2)
are valid within it. The K-dominance zone for FGMs has been
examined in Gu and Asaro (1997b), where it has been shown
that within the distance of a few percent of the characteristic
length. the difference of the stress fields of the asymptotic and
full solutions are within a few percent. Substituting (1) and (2)
into the two integrands, (b) and (c) can be confirmed. This
permits us to write

{b) plateau function

Fig. 3 The two often used shapes of g function
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material#2

Fig. 4(a)

Fig. 4(b)

Fig. 4 Two sandwiched bending specimens with FGM interlayer: {a)
three-point bending; (b) four-point bending

[ first integrand] = Ki ()
Ewqi 1
[second integrand] = Aé_?? L&) an
0 r

In (11), E{ is the derivative of the Young modulus at the crack
tip: f, and f» are obtained from angular functions in (1) and (2),
and therefore they do not have much effect on the magnitudes of
the two integrands. In our discussion, we assume that there is
only mode I loading. However, one can obtain the same conclu-
sion for mixed-mode presentation through similar steps. Also,
Ela is roughly proportional to E, as can be seen from the
following example. Consider the FGM interlayer in Fig. 4 with
linear modulus variation, we have Eq = (E» + E;)/2 and Ega
= Ewal/2/h when the crack tip is at the middle of the FGM
interlayer, where the subscripts denote the properties for mate-
rial #1 and #2. and { = (E, — E\)/(E.» + E,). The variation of
the multiplier L. as E,/E, varies, is small. So. the two scale
factors in the above expression (11) would not differ much as
long as a and h do not differ much. and this is similar for other
material variation forms. Note that if & is the smallest length
compared to other dimensional lengths. one could chose the
characteristic length a to be /i so that a/h = 1. If Ey and Ega
are of the same order, from the above analysis we estimate that
the first integral is 10" times the second integral. In general,
the difference between E, and Egja is not significant at all.
compared to that of the two weight functions and therefore the
second term in (7) may be neglected. It may also be shown
that the conclusion is true by a similar step if the plateau shape
for the ¢ function (Fig. 3(b)) is used.

Suppose that rp, is the radius of domain where the domain
integral is evaluated and within it the field can be well repre-
sented by the singular field (1) and (2), then from the above
analysis the error of neglecting the second term can be estimated
as ’

. !
¢~ TPEVE0 (12)
1+ I'I)E(,)/EQ

The error is very small if we choose rp, to be sufficiently small.
The simplified method has the following advantages: (a) it
gives the same accuracy for the stress intensity factors as the
domain integral for homogeneous materials, as we shall see in
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numerical examples: (b) the input of the derivatives of the
material propertics (gradients) is not required such that in the
numerical implantation only material properties need to he as-
signed 1o elements or Gauss integration points and this is casy
10 achieve: and (¢) no additional calculations are required ax
compared to the homogeneous case.

When the gradient of the thermal expansion coefficient of
the FGM does not vanish and thermal loading (temperature
change) is applied. the additional term related to the gradicent
of the thermal expansion coefficient is an integrand under the
second integral in (7) which can be written as

f:(8)

[thermal term under second integral] = K,Toa o =—
NI

(13)

where T is temperature change at the crack tip, ag is the gradi-
ent of thermal expansion coefficient at the crack tip, and f is
obtained from the angular function in (1). This term may also
be neglected due to the following reasons. First. it is under the
second integral in (7). As analyzed before, the first integral is
overweighted. Second. the 1/r factor in first integrand. given
in (11), is much larger than the ]/\/’; factor in (13), in the
domain wit) radius 10 *a. Third, since the stress solution only
depends on the ratio of the muduli of the two bulk materialy
for traction problems (as we shall see in next section), the two
moduli may be chosen in the calculation such that 1/Eyin (11)
is in a normal range. Having these, we can estimate that the
magnitude of (13) and that of the first expression of (11) do
not differ much.

We have gone a rigorous way to show that the standard
domain integral can be directly used for nonhomogeneous mate-
rials. A simple way tc argue this is that since the asymptotic
expressions (1) and (2) are the same as those for homogencous
materials with the mateiial properties being those at the crack
tip, there exists a small homogeneous zone which may be re-
garded as the K-dominance zone so that the standard domain
integral is valid there. But from this simple way it is impossible
to obtain the above error analysis. When the second term is
neglected, the expression 10 numerically calculate domain inte-
gral becomes

J=3 3 {[(J,ﬂju,‘, - Wé,)g ] det (?)} w,. (14)
p

Ap p=l "
which is the same as that for the homogeneous case.

When the domain integral is obtained, the stress intensity
factors can be evaluated using (4). If there is only mode |
stress intensity factor at the tip due to the symmetric material
properties, the geometry and the loading. it can be evaluated
directly from (4). If it is a mixed-mode problem. the interaction
energy release rate defined in Shih and Asaro (1989) may be
evaluated instead of the energy release rate in (4). Using the
interaction energy release rate, modes I and 1I can be sepurated.

3 Numerical Results

We have extensively tested the numerical method using many
crack geometries and loadings. The results have been compared
with those obtained by other methods. such as displacement-
matching and singular integral equations. All showed the
method to be accurate. convergent to the correct solution. The
domain integral evaluated from the domairis near the tip is
stable, independent of the domain chosen. The following are
four examples that illustrate this.

The first example is an edge-cracked plate made of o FGM.
subject to remote constant strain. It has been solved previously
by Erdogan and Wu (1993). using the singular integral equation
method. We use it to check the accuracy of our scheme. The
sccond and the third are three-point bending and four-point
bending specimens made of sandwiched structures with the in-
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terlayers being FGMs (Fig. 4). The interlayer is a zone of

transition wherein the material properties change smoothly from
the upper layer to the lower layer. The length 2L is assumed
to be sufficiently large so that it would not affect the solutions.
The height of the bars is 2H, the crack length a. and the height
of the interlayers 2/, The crack is perpendicular to the upper and
Jower boundaries, and its tip is inside the FGM. The sandwiched
structures can be used to study either the fracture of FGMs or
the interface behavior when the interlayer thickness is small
compared to those of the two bulk layers. The geometry of the
first example is the same as Fig. 4, and the only difference is
that it is a single piece of FGM for the constant strain problem.

The mesh design was discussed in the previous section. The
four-node bilinear elements are used in the study. We have
extensively tested the numerical method by changing the mate-
rial properties, the loadings. and the specimen dimensions. We
also have changed the size of the domain by changing the
number of rings of elements. All of the stress intensity factors
evaluated from the domain integral have shown the accuracy
of the scheme. The convergence study results will be provided
in tabular form later in the section. The material property varia-
tion is achieved by using corresponding material properties at
Gauss integration points of each element. We use the software
package ABAQUS to perform the calculation, and only the
user-subroutine UMAT is required for the material variation.
The J-integral is also calculated using the standard domain
integral function provided in ABAQUS.

For real FGMs, the property variation along the thickness
can be linear, exponential. or some other form. For elastic prob-
lems, both Young’s modulus and Poisson’s ratio vary with the
position in general. It is assumed in all examples in this section
that the former has the major effect and the latier is taken to
be constant. It is reasonable to do so since the variation of the
Poisson’s ratios is usually small compared to that of the moduli.
For the problems studied (see Fig. 4), the Young's modulus is
expressed by the following:

E()=Ay + B
E(y) = A exp(By) (15)

where A and B are material constants which represent material
gradients. The origin of the coordinates is at the center of these
specimens and y is along the thickness direction. The first ex-
pression in (15) is a linear form, whereas the second is an
exponential form. Given the moduli of the Jower and upper
laver, E, and E-. the two constants are expressed as

E*“‘E] B=E2+E‘

A=——, 16
2h 2 (16)
for the linear gradient. and
FE. 5oL (B
A =vEE,. 19-2/7 log (E,> (17

for the exponential variation.

In the first example. material variation along the thickness is
taken to be the exponential form in (15). The loading is a
constant strain ¢, far away from the crack at the two ends which

gives rise to a remote stress field, o = g, exp(By). where oy
= Ac,/(1 — v?). The encrgy release rate was calculated from
the domains formed by the first 20 rings. using the J-integral
evaluation function in ABAQUS. The resulis from the first ten
rings are shown in Table I, given for different E,/E; ratios. and
the results from the domains formed by the remaining ten rings
of elements basically are the same as those of column 9 and 10
in the table. The ratio E,/E, is the modulus of the upper bound-
ary over that of the lower boundary. In the calculation we choose
oo = 1 and the crack length ¢ = 1. From the table. the conver-
gence of the numerical method is clearly seen. When the ratio
is 1, it represents homogeneous material. In the strong material
variation case, the ratio is 10. We see that in both cases the
convergence behavior is the same. So, we may conclude that
the convergence of using the standard domain integral for FGMs
is the same as that for homogeneous materials. The domain
integral scheme has been proved to be a useful one in the
numerical analysis of the homogeneous fracture. Note that those
results from the domains formed by the first two rings usually
have a relatively large error in both the homogeneous and FGM
case, due to the inaccuracy of the innermost elements. Thus,
those results from the domains formed by the first two rings
may be disregarded. The stress intensity factors obtained from
the four cases in the table, in which the ratio is equal to 0.1,
0.2,5,and 10, are 4.01, 4.22, 6.49, and 7.48, respectively. These
results are the same as those obtained from the singular integral
equation method provided by Erdogan and Wu (1993).

Due to the symmetric geometries and symmetric material
properties with respect to the crack line for the two specimens
in Fig. 4, there is only mode ] stress intensity factor at the crack
tip for the second and third examples. Since the near-tip fields
are of the same form as those for homogeneous materials, the
generic form of the stress intensity factor may be written as

/
K1=Ta”:)’K%,;—i.-}l—;,sﬂ> (18)
1

where T is a representative stress magnitude, a is a characteristic
length (can be taken as the crack Jength) and Y is a dimen-
sionless function which is related to the geometries of the prob-
lems and material properties: the ratio of the moduli and 9, the
form of material variation. There are four independent variables
in the dimensionless function Y. For known material variation
§2 and the thickness of the FGM h/H, the solution Y depends
on the modulus ratio and the position of the crack tip a/H, and
may be systemically presented by tables or figures. For example.
if using tables, each table contains the solution for given $ and
h!/H, where the row represents E./E, and the column represents
alH. If using figures, each figure contains the solution for given
$ and h/H, and in the figure each curve corresponds to a value
E-/E, with the x-axis being a/H. Given the representatives of
§ and h/H, we construct the complete solution in above ways
for others to use. For homogeneous materials, Y is only related
to a/H. It is obtained in terms of a figure or empirical ex-
pressions which are given in the handbook by Tada et al.
(1985).

Figure 5 shows the solution of mode I stress intensity factor
versus the position of the crack tip in the FGM for linear mate-

Table 1 Convergence for the Remote Constant Strain Problem

Energy release rate calculated from the first ten rings [in units of oia/E,)

EJE, ] 2 3 4 6 7 8 9 10
0.1 4243 46.15 46.21 46.24 46.25 46.26 46.26 46.26 46.28 46.27
0.2 33.26 36.17 36.22 36.24 36.25 36.26 36.26 36.26 36.27 36.27
i 20.99 2283 22.86 22.88 22.88 22.89 22.89 22.89 22.90 2290
5 15.76 17.14 17.16 17.17 17.18 17.18 17.18 17.18 17.19 17.19

10 14.78 16.07 16.09 16.10 16.11 16.11 16.11 16.11 16.12 16.12
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h/H=0.1, L>>h,H
Linear Variation

Fy/E, < 1,0t is a stable growth when the decrease of the slope
in the figure overcomes the decrease of the toughness. Figure
6 represents the case when i/H = 0.5 and other parameters are
the same as Fig. 5. From the two figures we see that the trend

300 of these curves has a dramatic change as the percentage of the
25.0 FGM changes, and this is especially true for those curves with

g& 20.0 Ey/E; < 1. For many crack-tip positions in Fig. 6 the stress
T intensity factor increases as the crack length increases. This
15.0 0.5 \ means that if the increase of the toughness at the crack tp as

— the crack length increases is not as fast as the stress intensity

0.00 0.05

(a-H)H

018.1 0 -0.l05

Fig.5 Stress intensity factor versus crack-tip position in the FGM inter-
layer for three-point bending with h/H = 0.1

rial variation in the three-point bending specimen, where h/H
= 0.1. The geometry represents the case where the interlayer
of FGM is considerably thin compared to the two bulk materials,
It is seen that the curves in the figure are the nondimensional
function Y in (18) if the characteristic length is taken to be H.
The solutions of this kind for various #/H and $2 form a com-
plete solution for the three-point bending specimen. Usually
tough materials such as metals have a lower modulus than brittle
materials such as ceramics. From this figure, when the crack
travels from a tough side (the side with smaller modulus) to a
brittle side (the side with larger modulus) the crack-tip stresses
increase. The energy release rate calculated from the domains
formed by the first ten rings of elements is listed in Table 2 for
both linear and exponential material variations. The stable re-
sults in the table again show the convergence of the numerical
scheme. When the toughness of the two bulk materials is differ-
ent, it is expected 10 vary along the thickness of the FEGM and
can be written as I'((a — H)/H) in the EGM. Then, for stable
growth in the FGM interlayer we have

o(222) - 557

H

1
da da (19)

For unstable growth, in the second equation **<'* is replaced
by “*>." Let's consider a special case where the toughness is
constant across the thickness of the FGM. From the figure. we
see in this special case that when material #2 is much sofier
than material #1, E,/E, < 1. the crack growth is likely to be
stable. This is especially true when the crack tip is close to
material #2. When material £2 is stiffer than material #]. the
crack growth is likely to be unstable. In general. if the toughness
varies with position and the crack is close to material #2 with

factor, it is an unstable growth for the crack tip traveling in
those positions. In the above discussion of the crack growth.
we have assumed that the crack propagates along the original
direction, since these are the cases where geometry. loading.
and material are symmetric with respect to the crack line. A
first-order approximation model, which is based on local homo-
geneity, has been used to examine the crack propagating direc-
tion for several cracked FGM geometries (Gu and Asaro,
1997b). The model also predicts that a crack grows along its
original direction when everything is symmetric.

For the four-point bending specimen shown in Fig. 4, the
two ends far away from the crack line is in a pure bending
state, where the bending moment M = PJ and [ is the distance
between the applied force and the support of the beam. The
neutral axis changes with material properties, material variation,
and layer’s thicinesses and is known when these are given. Our
numerical results show very good convergence as those listed
in Table 1 and 2. Figures 7(a) and (b) illustrate the stress
intensity factor versus the interlayer thickness for the crack tip
at the center of the beam and linear material variation. It is
recognized that these curves are the function ¥ in (18) if the
characteristic length is chosen as H. Compared to Fig. 5. this
is another way to present the solution: each curve represents a
case for a value E»/E;, given £ and a/H. In these two figures,
for a fixed H and as h/H increases, the X increases when E./
E, > 1 and decreases when E./E; < 1. When h/H is zero, it
is the bimaterial solution. The figure tells us that although the
increase of the percentage of the FGM in the structure due to
the increase of interlayer thickness reduces the mismatch be-
tween the two bulk materials. it may not reduce the stress jnten-
sities at the crack tip. The increase or decrease of the stress
intensities depends on the crack position. As far as the crack
propagation is concerned, at this point we do not know how
the toughness changes with the FGM percentage increase (note
that the increase of the percentage reduces the material gradi-
ents). So we do not know if the increase of FGM percentage
can prevent the crack growth. However, under the special case
that the toughness is constant for FGM, we may conclude that
the increase of FGM percentage may not be good to prevent
crack growth. In another paper (Dao et al., 1997) we have
shown that the increase of FGM percentage may not reduce
microstress concentration at the grain size level under thermal
loading for a perfect FGM without cracking. The conclusion of
the microstress concentration was obtained from a statistically
based analysis.

Using a similar analysis. the method can be extended to the
three-dimensional case. In three-dimensional space. the domuin
can be chosen such that its boundary is a tube. which surrounds
the crack tip and whose radius of the cross section is sufficiently

Table 2 Convergence for the Three-Point Bending Specimen®

Energy release rate calculated from the first ten rings (in units of P/HE,)]

© ] 2 3 4 5 6 7 8 9 10
linear 466.8 507.7 508.4 508.7 508.8 508.9 508.9 508.9 509.1 500.1
exponential 542.7 590.2 591.1 591.4 591.6 591.6 591.7 5917 5919 5018

* The numerical results in the t1able are for 4 = 0.0, (@ —~ HyH = =0.1 and ENE, = 0.1

106 / Vol. 66, MARCH 1999




n

Ve

al

Lo |-

h/H=0.5, L>>h,H
Linear Variation

10.0

0'-%.50 -0.40-0.30-0.20-0.10 0.00 0.10 0.20 0.30 0.40 0.50
(a-H)H

Fig. 6 Stress intensity factor versus crack-tip position in the FGM inter-
layer for three-point bending with h/H = 0.5

small such that the analysis similar to the two-dimensional case
can be applied. Detailed discussion of the three-dimensional
standard domain integral can be found in previously mentioned
papers on the domain integral. The reason for which the simpli-
fied method is true is exactly the same as that for the two-
dimensional case, i.e., the standard domain integral is over-
weighted compared to the nonhomogeneous terms. Here we
will only give an example of a special version in three-dimen-
sional space, an asymmetric problem shown in Fig. 8. The
detailed discussion of the general three-dimensional problem
will be given in a separate article elsewhere. The penny-shaped
crack (Fig. 8) is in a cylindrical solid. The radius of the crack
is a, the radius of the cross section is R, and the length of the
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Fig. 7 Stress intensity factor versus thickness of the FGM interlayer for

four-point bending
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Fig. 8 Penny-shaped crack in a cylindrical FGM solid

solid is so large as not to affect the solution. The Young's
modulus is considered to vary along the radius direction, E =
E(r). By the structure of the crack-tip field and dimensional
consideration, the solution is given in the form

K = ra”zy@ , % , 59) (20)
1

where E; is the modulus at the outer boundary and E, is the
modulus at the asymmetric line. The solution to the problem
can be easily documented compared to the three-layer bending
bars, since we have fewer dependent parameters in the nondi-
mensional function Y here. For given material variation , the
solution can be presented by a table or a figure. Table 3 shows
the convergence for linear anc exponential variations, where
EyJE, = 20 and a/R = 0.5. The convergence is very much
similar to the two-dimensional case. Except for the first one or
two rings, others give the accurate solution.

4 Concluding Remarks

We have shown that the standard domain integral can be
used to evaluate the crack-tip field for nonhomogeneous materi-
als. such as FGMs. The method requires a sufficiently fine mesh
near the crack tip as shown. However, the error induced by the
method is estimated such that one can control the error by
controlling the size of the domain where the domain integral is
evaluated. From the numerical solutions given in the previous
section, we have seen that the energy release rate calculated
from the domains formed by the rings of elements around the
crack tip in this way is very stable and accurate. The examples
are all in mode I where both loading, geometry, and material
variation are symmetric with respect to the crack face. but the
method can be used to calculate the modes I and 11 stress inten-
sity factors for the mixed-mode case using a defined interaction
energy release rate by Shih and Asaro (1989). The method may
also be extended to the nonlinear case, such as plastic crack
problems. These all suggest that this simplified method, without
the input of material gradients and without many changes of
the existing finite element code for homogeneous materials,
may be well suited for crack mechanics analysis of FGMs where
the materials possess gradients. In the examples of the sand-
wiched structure we have presented the solution in a compact
functional form which can be used to easily document a com-
plete solution for other study and design purpose. Finally, it is
noted that the material variation is assumed to be continuous
across the thickness of the FGM in this study. For real FGMs,
the material variation is created by the spatial distribution of
one maierial phase relative 1o the other. The continuous ap-
proach. the proposed numerical method and the fracture behav-
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Table 3 Convergcnce for Penny-Shaped Crack in a Cylindrical Solid*

Energy release rate calculated from the first ten rings [in units of T°a/E\}

o 1 2 3 C 4

5 6 7 8 9 - 10

linear 0.04260 0.04633 0.04640 0.04642 0.04644 0.01644 0.04645 0.04645 0.04646 0.04646
exponential 0.03286 0.03574 0.03579 0.03581 0.03582 0.03583 0.03583 0.03583 0.03584 0.03584

* The numerical results in the table are for a/R = 0.5 and EJ/E, = 20

jor analysis in the previous section, implies that the particle size
of the phases that make the FGMs is very small compared to
the crack length and other geometrical lengths, and the micro-
structure of the FGMs is sufficiently fine. In the above condition,
the effect of the particle size in the mechanics analysis may be
neglected. '
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